PyTorch学习笔记(4)卷积、池化、非线性激活

本文是PyTorch学习笔记的第四部分,详细介绍了卷积、池化和非线性激活的概念与应用。内容包括卷积层的Conv2d参数解释、池化层的MaxPool2d介绍及其实际应用,以及ReLU和Sigmoid激活函数的作用和代码示例。
摘要由CSDN通过智能技术生成


基本骨架

只需要继承 Module 类,再实现相应的方法即可。

这里实现了一个极简的神经网络,即对输入值加一再输出。

from  torch import nn
import torch

#一个简单的神经网络
class Test(nn.Module):
    def __init__(self):
        super(Test, self).__init__()

    def forward(self,input):
        output = input+1
        return output

test = Test()
x = torch.tensor(1.0)
output = test.forward(x)
print(output)

卷积操作

这里用 nn.functional 实现最基本的卷积运算

nn 中的大多数 layerfunctional中都有一个与之对应的函数。

nn.functional 中的函数与 nn.Module 的区别是:

nn.Module 实现的层(layer)是一个特殊的类,都是由 class Layer(nn.Module) 定义,会自动提取可学习的参数
nn.functional 中的函数更像是纯函数,由 def functional(input)定义。

但在进行训练时,最好使用 nn.module,比较方便。

import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])
print(input)
# 卷积核
kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))

#升纬
print(input.shape)
print(kernel.shape)

#进行一次卷积运算
output = F.conv2d(input, kernel, stride=1)
print(output)

#二维卷积
output2 = F.conv2d(input, kernel, stride=2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值