基本骨架
只需要继承 Module 类,再实现相应的方法即可。
这里实现了一个极简的神经网络,即对输入值加一再输出。
from torch import nn
import torch
#一个简单的神经网络
class Test(nn.Module):
def __init__(self):
super(Test, self).__init__()
def forward(self,input):
output = input+1
return output
test = Test()
x = torch.tensor(1.0)
output = test.forward(x)
print(output)
卷积操作
这里用 nn.functional
实现最基本的卷积运算。
nn 中的大多数 layer
在functional
中都有一个与之对应的函数。
nn.functional
中的函数与nn.Module
的区别是:
nn.Module
实现的层(layer)是一个特殊的类,都是由class Layer(nn.Module)
定义,会自动提取可学习的参数
nn.functional
中的函数更像是纯函数,由def functional(input
)定义。但在进行训练时,最好使用 nn.module,比较方便。
import torch
import torch.nn.functional as F
input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]])
print(input)
# 卷积核
kernel = torch.tensor([[1, 2, 1],
[0, 1, 0],
[2, 1, 0]])
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))
#升纬
print(input.shape)
print(kernel.shape)
#进行一次卷积运算
output = F.conv2d(input, kernel, stride=1)
print(output)
#二维卷积
output2 = F.conv2d(input, kernel, stride=2