- 博客(18)
- 资源 (4)
- 收藏
- 关注
原创 (十五)集成学习(下)——蒸汽量预测
参考:DataWhale教程链接集成学习(上)所有Task:(一)集成学习上——机器学习三大任务(二)集成学习上——回归模型(三)集成学习上——偏差与方差(四)集成学习上——回归模型评估与超参数调优(五)集成学习上——分类模型(六)集成学习上——分类模型评估与超参数调优(七)集成学习中——投票法(八)集成学习中——bagging(九)集成学习中——Boosting简介&AdaBoost(十)集成学习中——GBDT(十一)集成学习中——XgBoost、LightGBM(十二)
2021-05-23 20:49:33 510 2
原创 (十四)集成学习(下)——幸福感预测
参考:DataWhale教程链接集成学习(上)所有Task:(一)集成学习上——机器学习三大任务(二)集成学习上——回归模型(三)集成学习上——偏差与方差(四)集成学习上——回归模型评估与超参数调优(五)集成学习上——分类模型(六)集成学习上——分类模型评估与超参数调优(七)集成学习中——投票法(八)集成学习中——bagging(九)集成学习中——Boosting简介&AdaBoost(十)集成学习中——GBDT(十一)集成学习中——XgBoost、LightGBM(十二)
2021-05-19 00:27:42 1203
原创 (十三)集成学习(下)——Stacking
参考:DataWhale教程链接集成学习(上)所有Task:(一)集成学习上——机器学习三大任务(二)集成学习上——回归模型(三)集成学习上——偏差与方差(四)集成学习上——回归模型评估与超参数调优(五)集成学习上——分类模型(六)集成学习上——分类模型评估与超参数调优(七)集成学习中——投票法(八)集成学习中——bagging(九)集成学习中——Boosting简介&AdaBoost(十)集成学习中——GBDT(十一)集成学习中——XgBoost、LightGBM(十二)
2021-05-13 23:53:09 2255
原创 (十二)集成学习(下)——Blending
参考:DataWhale教程链接集成学习(上)所有Task:(一)集成学习上——机器学习三大任务(二)集成学习上——回归模型(三)集成学习上——偏差与方差(四)集成学习上——回归模型评估与超参数调优(五)集成学习上——分类模型(六)集成学习上——分类模型评估与超参数调优(七)集成学习中——投票法(八)集成学习中——bagging(九)集成学习中——Boosting简介&AdaBoost(十)集成学习中——GBDT(十一)集成学习中——XgBoost、LightGBM(十二)
2021-05-12 01:05:41 534 3
原创 (十一)集成学习中——XgBoost、LightGBM
参考:DataWhale教程链接集成学习(上)所有Task:(一)集成学习上——机器学习三大任务(二)集成学习上——回归模型(三)集成学习上——偏差与方差(四)集成学习上——回归模型评估与超参数调优(五)集成学习上——分类模型(六)集成学习上——分类模型评估与超参数调优(七)集成学习中——投票法(八)集成学习中——bagging(九)集成学习中——Boosting简介&AdaBoost(十)集成学习中——GBDT(十一)集成学习中——XgBoost、LightGBM文章目录
2021-04-27 01:34:07 446
原创 (十)集成学习中——GBDT
参考:DataWhale教程链接集成学习(上)所有Task:(一)集成学习上——机器学习三大任务(二)集成学习上——回归模型(三)集成学习上——偏差与方差(四)集成学习上——回归模型评估与超参数调优(五)集成学习上——分类模型(六)集成学习上——分类模型评估与超参数调优(七)集成学习中——投票法(八)集成学习中——bagging(九)集成学习中——Boosting简介&AdaBoost(十)集成学习中——GBDT(十一)集成学习中——XgBoost、LightGBM...
2021-04-21 15:25:40 370
原创 (三)集成学习上——偏差与方差
DataWhale教程:https://github.com/datawhalechina/team-learning-data-mining/tree/master/EnsembleLearning前面的Task:(一)集成学习上——机器学习三大任务(二)集成学习上——回归模型文章目录2.1.5 评估模型的性能并调参(1) 训练集与测试集(2) 训练均方误差与测试均方误差(3) 偏差与方差的权衡(4)怎样降低测试误差① 特征提取 [原始变量的子集]训练误差修正交叉验证② 正则化/压缩估计 [变量
2021-03-22 15:12:19 361
原创 (二)集成学习上——回归模型
Task2教程:DataWhale集成学习教程链接写在前面:Task1还没啥压力,到了Task2,对于从未推导过公式的小白来说有些太吃力了,只能尽力做。本节课程除了SVR大部分原理都懂,实践问题都不大,调参还是个问题。手推公式暂时只能搞定最小二乘法,也算是进步。周末再回到Task2尝试一下,工作党伤不起。。2. 使用sklearn构建完整的机器学习项目流程一般来说,一个完整的机器学习项目分为以下步骤:明确解决问题的模型类型:回归/分类收集数据集并选择合适的特征。选择度量模型性能的指标。选择
2021-03-19 00:10:54 992
原创 (一)集成学习上——机器学习三大任务
1.导论关于什么是机器学习,有监督学习、无监督学习、回归、分类的解释,参考众多,不再赘述。参考1:DataWhale教程链接参考2:DataWhale好文,机器学习的通俗讲解! 也有非常棒的讲解。在学习机器学习中,我们经常使用scikit-learn简称sklearn工具库来探索机器学习项目,下面我们开始使用sklearn来演示这几个具体的概念:# 引入相关科学计算包import numpy as npimport pandas as pdimport matplotlib.pyplot
2021-03-15 21:50:03 582 1
原创 (五)异常检测——高维数据异常检测
异常检测——高维数据异常检测主要内容包括:Feature Bagging孤立森林文章目录异常检测——高维数据异常检测1、引言2、Feature Bagging2.1 Feature Bagging的通用算法2.2 Feature Bagging 的设计关键点1. 选择基检测器2. 分数标准化3. 分数组合方法2.3 Bagging的必要条件3、Isolation Forests3.1 Isolation Forest算法原理1. Isolation2. Isolation Trees3. 异
2021-01-24 19:51:54 350
原创 (四)异常检测——基于相似度的方法
异常检测——基于相似度的方法本文github地址主要内容包括:基于距离的度量基于密度的度量文章目录异常检测——基于相似度的方法1、概述2、基于距离的度量2.1 基于单元的方法2.1.1 网格距离的由来2.1.2 以二维为例,看各个邻居与当前单元格的距离2.1.3 基于单元格计算异常值、非异常值(简单快捷)2.1.4 注意事项2.2 基于索引的方法(暂不深入研究)3、基于密度的度量(LOF)3.1 kkk-距离(k−distance(p)k-distance(p)k−distance(p)):3
2021-01-21 17:55:09 363 1
原创 (二)异常检测——基于统计学的方法
基于统计学的方法文章目录基于统计学的方法1. 概述2. 参数方法2.1 基于正态分布的一元异常点检测2.2 多元异常点检测(符合高斯分布)2.3 混合分布3. 非参数方法4. HBOS算法5. HBOS算法实践1. 概述统计学方法对数据的正常性做出假定。**它们假定正常的数据对象由一个统计模型产生,而不遵守该模型的数据是异常点。**统计学方法的有效性高度依赖于对给定数据所做的统计模型假定是否成立。异常检测的统计学方法的一般思想是:学习一个拟合给定数据集的生成模型,然后识别该模型低概率区域中的对象,把
2021-01-15 17:18:50 421
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人