集成学习(上)所有Task:
Blending集成学习算法
Blending集成学习方式:
-
(1) 将数据划分为训练集TrainData和测试集TestData,其中训练集需要再次划分为训练集Train_TrainData和验证集Train_ValData;
-
(2) 构建第一层模型:选择 M M M个基模型(对Train_TrainData数据集进行训练),这些模型可以使同质的也可以是异质的;
-
(3) 训练第一层模型:使用Train_TrainData训练步骤2中的 M M M个模型,然后用训练好的 M M M个模型预测Train_ValData得到val_predict;
-
(4) 构建第二层的模型:一般是逻辑回归;
-
(5) 训练第二层的模型:以Train_ValData的特征为输入,以val_predict为因变量训练第二层的模型;
至此,模型训练完成
接下来是模型预测 -
(6) 模型预测:用TestData走一遍第一层模型,得到test_predict1,再用test_predict1作为输入走一遍第