(十二)集成学习(下)——Blending

参考:DataWhale教程链接

集成学习(上)所有Task:

(一)集成学习上——机器学习三大任务

(二)集成学习上——回归模型

(三)集成学习上——偏差与方差

(四)集成学习上——回归模型评估与超参数调优

(五)集成学习上——分类模型

(六)集成学习上——分类模型评估与超参数调优

(七)集成学习中——投票法

(八)集成学习中——bagging

(九)集成学习中——Boosting简介&AdaBoost

(十)集成学习中——GBDT

(十一)集成学习中——XgBoost、LightGBM

(十二)集成学习(下)——Blending

(十三)集成学习(下)——Stacking

(十四)集成学习(下)——幸福感预测

(十五)集成学习(下)——蒸汽量预测

Blending集成学习算法

Blending集成学习方式:

  • (1) 将数据划分为训练集TrainData和测试集TestData,其中训练集需要再次划分为训练集Train_TrainData和验证集Train_ValData;

  • (2) 构建第一层模型:选择 M M M个基模型(对Train_TrainData数据集进行训练),这些模型可以使同质的也可以是异质的;

  • (3) 训练第一层模型:使用Train_TrainData训练步骤2中的 M M M个模型,然后用训练好的 M M M个模型预测Train_ValData得到val_predict;

  • (4) 构建第二层的模型:一般是逻辑回归;

  • (5) 训练第二层的模型:以Train_ValData的特征为输入,以val_predict为因变量训练第二层的模型;

    至此,模型训练完成
    接下来是模型预测

  • (6) 模型预测:用TestData走一遍第一层模型,得到test_predict1,再用test_predict1作为输入走一遍第

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值