【总结】深度学习中的LOSS

【总结】深度学习中的损失函数

1. 铰链损失/合页损失 Hinge Loss

SVM常用损失函数

  • 函数表达式
    L ( y , f ( x ) ) = m a x ( 0 , 1 − y ⋅ f ( x ) ) L(y,f(x)) = max(0,1-y·f(x)) L(y,f(x))=max(0,1yf(x))

  • 函数图像
    在这里插入图片描述
    通过上图可知,当 y ⋅ f ( x ) > 1 y·f(x)>1 yf(x)>1时, l o s s = 0 loss=0 loss=0;否则, l o s s = 1 − y ⋅ f ( x ) loss=1-y·f(x) loss=1yf(x)。也就是说,只有被正确分类的时候,loss才为0。

2. 交叉熵 Cross-entropy Loss

(1)用于二分类

表示样本abel与预测值为正类概率的关系

  • 函数表达式
    C = − 1 N ∑ i [ y i l n ( p i ) + ( 1 − y i ) l n ( 1 − p i ) ] C = -\frac{1}{N}\sum_i[y_iln(p_i)+(1-y_i)ln(1-p_i)] C=N1i[yiln(pi)+(1yi)ln(1pi)]
    其中,
    y i y_i yi——样本 i i i的label,正类为1,负类为0;
    p i p_i pi——样本 i i i的预测值为正类的概率。

(2)用于多分类

-函数表达式
C = − 1 N ∑ i ∑ k [ y i k l n ( p i k ) ] C = -\frac{1}{N}\sum_i\sum_k[y_{ik}ln(p_{ik})] C=N1ik[yikln(pik)]
其中,
y i k y_{ik} yik——样本 i i i的label,与正类类别相同为1,否则为0;
p i k p_{ik} pik——样本 i i i的预测值为第 k k k类的概率。

  • 优点
    使用逻辑函数得到概率,并结合交叉熵当损失函数时,在模型效果差的时候学习速度比较快,在模型效果好的时候学习速度变慢
  • 缺点
    sigmoid(softmax)+cross-entropy loss 擅长于学习类间的信息,因为它采用了类间竞争机制,它只关心对于正确标签预测概率的准确性,忽略了其他非正确标签的差异,导致学习到的特征比较散。基于这个问题的优化有很多,比如对softmax进行改进,如L-Softmax、SM-Softmax、AM-Softmax等。

3. 均方误差MSE

  • 函数表达式
    M S E = 1 n ∑ i n ( y i ^ − y i ) 2 MSE = \frac{1}{n}\sum_i^n(\hat{y_i}-y_i)^2 MSE=n1in(yi^yi)2
  • 缺点
    逻辑回归配合MSE损失函数采用梯度下降法进行学习时,在训练初始阶段学习速率非常慢

4. Smooth L1 Loss

  • 函数表达式
    s m o o t h L 1 ( x ) = { 0.5 x 2 , ∣ x ∣ < 1 ∣ x ∣ − 0.5 , o t h e r w i s e smooth_{L_1}(x) = \begin{cases} 0.5x^2, & |x| <1 \\ |x| - 0.5, & otherwise \end{cases} smoothL1(x)={0.5x2x0.5x<1otherwise
  • 函数图像
    在这里插入图片描述

参考

(1) 机器之心——机器学习大牛最常用的5个回归损失函数,你知道几个?
(2) 一文读懂机器学习常用损失函数(Loss Function)
(3) 损失函数 - 交叉熵损失函数

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值