Python 排序 冒泡排序 希尔排序 快速排序 插入排序 选择排序 归并排序

排序

1 冒泡排序—-稳定

  • 最大的数像冒泡一样依次浮出
  • 紧挨着的两个数,两两相比,通过交换,大的永远排在后,依次循环,替换,最大的数就排在了最后面
  • 两个for循环嵌套,内部循环负责从左到右依次比对,外部循环负责比对循环的次数
  • 立旗优化,若循环一遍,没有更替,则已为正序排序,直接退出循环
  • 时间复杂度 最优:O(n),最坏O(n**2)
  • 最优 遍历一次发现没有任何需要交换的元素
def bubble_sort(alist):
    """冒泡排序"""
    n = len(alist)
    for j in range(1,n-1):
        # exchange_flag = False
        for i in range(n-j):
            if alist[i] > alist[i+1]:
                alist[i],alist[i+1] = alist[i+1],alist[i]
                exchange_flag = True
        # if not exchange_flag:
        #     break

2 选择排序—-不稳定

  • 立旗,给元素做标记,记为最小值,依次拿其他元素做对比,遇到把比它小的元素,更改标记,直至找到最小的元素
  • 按着列表排列顺序,依次更换
  • 外循环负责每次内循环开启时,最小值旗帜的开始位置
  • 内循环负责找出最小时,并排序
  • 时间复杂度:最优最坏均为O(n**2)
def selection_sort(alist):
    """选择排序"""
    n = len(alist) 
    for j in range(n):
        min_flag = j
        for i in range(j+1,n):
            if alist[i] < alist[min_flag]:
                min_flag = i
        alist[j],alist[min_flag] = alist[min_flag],alist[j]

3 插入排序—-稳定

  • 将序列分为两部分,一部分是有序的,一部分是无序的
  • 起始:将角标为0的元素认定为有序的,后面的认为是无序的
  • 将无序的元素与有序的元素,逐个对比,若无序元素大,则不变,
  • 若无序元素小,则与比对元素替换,并继续与角标小的有序元素逐个继续比对, 直至比对到无序元素为大
  • 两个for循环,内部循环负责依次往前比对,遇到比自己大的元素则替换
  • 外部循环负责每次内部循环开始的位置,从角标1到最后
  • 时间复杂度:最优O(n) 最坏O(n**2)
  • 最优:升序排列,序列已经处于升序状态
def insert_sort(alist):
    """插入排序"""
    n = len(alist)
    for j in range(1,n):
        for i in range(j,0,-1):
            if alist[i] < alist[i-1]:
                alist[i],alist[i-1] = alist[i-1],alist[i]
            else:
                break

4 希尔排序—-不稳定

  • 插入排序的优化版本,将无序的序列变得相对有序
  • 内部循环每次根据步长分组,每次循环的步长为上次的一半,直至最后一次按照插入排序进行
  • 原理是相对有序的序列在进行插入排序的时候break的机会增多,时间复杂度为nlogn~ n**2
  • 内部循环因为步长不同的时候均有循环,不确定循环次数,用while,用i<=gap控制循环结束
  • 时间复杂度:最优:以步长序列不同而不同 最坏:O(n**2)
  • 最坏:步长为1,即插入排序
def shell_sort(alist):
    """希尔排序"""
    n = len(alist)
    gap = n//2
    while gap > 0:
        for i in range(gap, n):
            while i >= gap and alist[i] < alist[i - gap]:
                alist[i], alist[i - gap] = alist[i - gap], alist[i]
                i -= gap
        gap //= 2

5 快速排序—-不稳定

  • 设立一个基准值,起始值为下标为0的数
  • 序列左边和序列最右边各有一个游标
  • 从右游标开始,和基准值做对比,如果比基准值大,则右游标向左移动,否则,将该值替换到左标记的位置
  • 替换之后,换左标记的位置开始右移比对,如果小于基准值,继续右移,否则,将该值替换到右标记的位置
  • 左右游标依次活动,直至相遇,相遇时,把把基准值赋给左游标的元素
  • 在相遇处的左右两边继续进行此项活动
  • 和归并排序相比因为不需要开辟额外空间,所以应用更多,置于稳定,看应用场景,如果需要稳定排序,则考虑归并排序
  • 时间复杂度 最优:O(nlogn),最坏O(n**2)
  • 每次排序时间复杂度O(n),一共执行了logn次
  • 最坏考虑的情况是,例如:每次设立基准值之后,右边只有大于它的数
def quick_sort(alist,start,end):
    """快速排序"""
    if start >= end:
        return
    left = start
    right = end
    base_value = alist[left]

    while left < right:
        while left < right and base_value <= alist[right]:
            right -= 1
        alist[left] = alist[right]
        while left < right and base_value > alist[left]:
            left += 1
        alist[right] = alist[left]

    alist[left] = base_value

    quick_sort(alist,start,left-1)
    quick_sort(alist,left+1,end)

归并排序—-稳定

  • 递归思想,自己调用自己进行拆分
  • 第一步:二步拆分,直至把所有的元素拆开为单个存在的列表
  • 第二步:循环,合并数组,逐步分组排序,两组直接进行比较列表
  • 新建列表,把元素按大小加入到新的列表中
  • 时间复杂度:最优最坏均为:O(nlogn)
  • 拆分为O(1),两两合并为O(n),两两合并共执行了logn次
  • 归并排序因为重新定义了一个列表,所以在空间上额外需要消耗一块内存
def merge_sort(alist):
    """归并排序"""
    n = len(alist)
    if n == 1:
        print(alist)
        return alist
    left,right = 0,0
    mid_flag = n // 2
    left_list = merge_sort(alist[:mid_flag])
    right_list = merge_sort(alist[mid_flag:])

    merge_sort_list = []
    lcount = len(left_list)
    rcount = len(right_list)

    while left < lcount and right < rcount:
        # 加上等号,是稳定的
        if left_list[left] <= right_list[right]:
            merge_sort_list.append(left_list[left])
            left += 1
        else:
            merge_sort_list.append(right_list[right])
            right += 1

    merge_sort_list += left_list[left:]
    merge_sort_list += right_list[right:]

    return merge_sort_list



if __name__ == '__main__':
    alist = [54,26,93,17,77,31,44,55,20]
    # bubble_sort(alist)
    # selection_sort(alist)
    # insert_sort(alist)
    # quick_sort(alist,0,len(alist)-1)
    # shell_sort(alist)
    # print(alist)
    print(merge_sort(alist))
"""
归并排序执行步骤
alist = [54,26,93,17,77,31,44,55,20]
n = 9
mid_flag = 4 取left[:4]
left_list = merge_sort([54,26,93,17])  # -1-这个函数体停在这句话,重新调用函数
    alist 变为 [54,26,93,17]
    n = 4
    mid_flag = 2
    left_list = merge_sort([54,26])  # -2-函数体停在这里,重新调用函数
        n = 2
        mid_flag = 1
        left_list = merge_sort([54])  # -3-函数体停在这里,重新调用函数
            n = 1
            return [54]  # -4- 函数体执行结束,-3-函数体获得返回值
            left_sort = [54]  # -3-函数体获得返回值,-3-可以继续往下执行
            right_list = merge_sort([26])
            return [26]
            right_list = [26]
            进入while循环 ,[54]和[26]进行拼接 return [26,54]  # -3-函数体执行结束,-2-函数体获得返回值
        left_list = [26,54] # -2-函数体获得返回值,-2-函数体继续执行
        right_list = merge_sort([93,17])  # -2-函数体停在这里,重新调用函数
            n = 2
            mid_flag = 1
            left_list = merge_sort([93])  # -2-1-函数体停在这里,重新调用函数
                n = 1
                return [93]  # -2-2-函数体结束 -2-1-获得返回值
                left_list = [93]  # -2-1-获得返回值, -2-1-继续执行
                right_list = merge_sort([17])  # -2-1-函数体停在这里,重新调用函数
                    n = 1
                    return [17]  # --函数体结束,-2-1- 函数获得返回值
                right_list = [17]  # -2-1- 函数获得返回值,继续执行合并,函数结束,-2-函数获得返回值
        right_list = [17,93]  # -2- 获得返回值,可以继续执行合并,-1-获得返回值
    left_list = [17,26,54,93]  # -1-获得返回值,可以继续执行函数体
    right_list = [77,31,44,55,20]
    ........

"""
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值