求图最短路的几个方法

求图最短路的几个方法

C++和Python3代码。
只是简单提供板子,之后会更新相关题目。
包括Dijkstra、Bellman-Ford、spfa、Floyd。
板子来自ACwing。
有错误欢迎评论私信指正

Dijkstra求最短路

查找每个节点的所连接的所有子节点中的最短路径,即局部最优,再将所有局部最优结合到一起,就是全局最优。

所以步骤分为:

  1. 找当前节点 i i i连接的所有节点中的最短路径,如果存在该节点,记为 t t t
  2. t t t到起点的距离更新,对比从起点到 t t t的距离和起点到 i i i的距离加上 i i i t t t的距离之间的大小,将小的更新为 t t t到起点的距离。
    描述

这里插一脚,关于稠密图和稀疏图的区别:边的个数远远大于点的个数就是稠密图,边的个数和点的个数差不多就是稀疏图。

步骤一还可以优化,等下给出,先看未优化的。

未优化

Python3
n, m = map(int, input().split())
INF = float('inf')
# 用邻接矩阵存储图,邻接矩阵用于稠密图
g = [[INF for _ in range(n+1)] for _ in range(n+1)]
dist = [INF for _ in range(n+1)]    # 存储起点到当前遍历的点的最短距离
st = [False for _ in range(n+1)]    # 判断当前节点是否已经有最短路
def Dijkstra():
    dist[1] = 0     # 起点到起点的距离为0
    for i in range(n):
        # t找到距离i最近的点
        t = -1
        for j in range(1, n+1):
            if not st[j] and (t == -1 or dist[t] > dist[j]):
                t = j
        # 当前t有了最短路径
        st[t] = True
        
        # 更新dist
        for j in range(1, n+1):
            dist[j] = min(dist[j], dist[t] + g[t][j])
    # 如果图中出现了断层,没有最短路,则return -1
    if dist[n] == INF:
        return -1
    else:
        # 反之则return到n的最短路距离
        return dist[n]
    

while m:
    m -= 1
    a, b, c = map(int, input().split())
    g[a][b] = min(g[a][b], c)

print(Dijkstra())
C++
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 510, INF = 0x3f3f3f3f;
int g[N][N], d[N];
bool st[N];
int n, m;

int Dijkstra()
{
    memset(d, INF, sizeof d);
    d[1] = 0;
    for (int i = 1; i <= n; i++)
    {
        // 步骤1
        int t = -1;
        for (int j = 1; j <= n; j++)
        {
            if (!st[j] && (t == -1 || d[t] > d[j]))
            {
                t = j;
            }
        }
        st[t] = true;
        
        for ( int j = 1; j <= n; j ++ )
        {
            d[j] = min(d[j], d[t] + g[t][j]);
        }
    }
    if ( d[n] == INF ) return -1;
    else return d[n];
}


int main()
{
    cin >> n >> m;
    memset(g, INF, sizeof g);
    
    while (m -- )
    {
        int a, b, c;
        cin >> a >> b >> c;
        // min有重边取最小
        g[a][b] = min(g[a][b], c);
    }
    
    int t = Dijkstra();
    cout << t << endl;
    
    return 0;
}

未优化的时间复杂度为 O ( n 2 ) O(n^2) O(n2),查找的n和更新的n。

在查找最短边的过程中,我们发现,可以在更新 d i s t dist dist的过程中去顺便找到最短边。
因为只要我们将 d i s t [ 1 ] dist[1] dist[1]初始化为0,且 d i s t dist dist数组的其他节点设置为无穷大,则在遍历1所连接的节点时,1的所有节点的 d i s t dist dist都要比 d i s t dist dist大,此时会将1所连接的所有的节点的 d i s t dist dist都更新,但我们只要距离最短的,所以此时我们可以使用一个小根堆,将更新了 d i s t dist dist的所有节点都存放到该小根堆中,按照各节点的 d i s t dist dist值来排序,此时我们就完成了查找最短边的任务,例如下图。
描述

因为堆优化与边的数量有关,所以用于稀疏图,用邻接表存储。

优化后

Python3
# 通过小根堆,将查找当前节点距离最近的点的步骤的时间复杂度
import heapq
n, m = map(int, input().split())
INF = float('inf')
N = 100010
M = 2 * N
# 这里利用的是领接表存储图
h = [-1 for _ in range(N)]
e = [0 for _ in range(M)]
ne = [0 for _ in range(M)]
w = [0 for _ in range(M)]   # 存放上一个节点到当前节点的距离
idx = 0

d = [INF for _ in range(n+1)]
st = [False for _ in range(n+1)]

def add(a, b, c):    
    global idx
    e[idx] = b
    w[idx] = c
    ne[idx] = h[a]
    h[a] = idx
    idx += 1

while m:
    m -= 1
    a, b, c = map(int, input().split())
    add(a, b, c)

ans = []
def dijkstra():
    d[1] = 0
    heap = []
    # 小根堆依据第一个元素排序,所以要将距离放在编号的前面,不然就会找bug找半天
    heapq.heappush(heap, (0, 1))
    while heap:
        t = heapq.heappop(heap)
        # 取得编号
        var = t[1]
        ans.append(var)
        # 取得距离
        distance = t[0]
        # 如果该点已经存在最短路径,则跳过该点
        if st[var]:
            continue
        # 反之则将该点设置为有最短路
        st[var] = True
        # 遍历t[1]所连接的节点
        i = h[var]
        while i != -1:
            j = e[i]
            # 如果当前点j到起点的距离大于起点到t[1]的距离+t[1]到j的距离,则更新d[j]
            if d[j] > distance + w[i]:
                d[j] = distance + w[i]
                # 将当前更新了最短路的点存入小根堆中
                heapq.heappush(heap, (d[j], j))
            i = ne[i]
    if d[n] == INF:
        return -1
    else:
        
        return d[n]
    
print(dijkstra())
C++
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>


using namespace std;

const int N = 200010;
const int M = N * 2;

int n, m;

int h[N], e[M], w[M], ne[M], idx;
int dist[N];
bool st[N];
typedef pair<int, int> PII;


void add(int a, int b, int c)  // 添加一条边a->b,边权为c
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

int dijkstra()  // 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();
        int ver = t.second;
        int distance = t.first;
        if (st[ver]) continue;
        st[ver] = true;
        for(int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}


int main()
{
    memset(h, -1, sizeof h);
    cin >> n >> m;
    
    while (m -- )
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    
    cout << dijkstra() << endl;
    return 0;
}

堆优化后时间复杂度降到了 O ( ( n + m ) log ⁡ 2 n ) O((n + m) \log_2n) O((n+m)log2n) O ( log ⁡ 2 n ) O(\log_2n) O(log2n)为从堆顶取出元素的时间复杂度,最多有n次操作,再加上将更新了 d i s t dist dist的节点插入到堆中的 O ( log ⁡ 2 n ) O(\log_2n) O(log2n),最多有m次操作。
这里就能回答为什么堆优化的Dijkstra要用于稀疏图了,对于稀疏图,因为边数和点数差不多,所以可以将时间复杂度变为 O ( n log ⁡ 2 n ) O(n\log_2n) O(nlog2n),但在稠密图中,因为边的个数远远大于点的个数,所以在某些不好的情况下,会将时间复杂度升级为 O ( n 2 log ⁡ 2 n ) O(n^2\log_2n) O(n2log2n),还不如不用堆优化。

还能用斐波那契堆来实现小根堆,可以将时间复杂度降到 O ( n log ⁡ 2 n + m ) O(n\log_2n + m) O(nlog2n+m),感兴趣的可以去了解一下。

Dijkstra求最短路一般用于没有负权边的带权图,所以在遇到有负权边的图时,会考虑使用 B e l l m a n − F o r d Bellman-Ford BellmanFord算法。

Bellman-Ford求最短路

题目

Bellman-Ford算法能够处理图中带有负权边的情况,为什么Dijkstra不能够处理这种情况呢?因为Dijkstra算法是选所有的局部最优就为全局最优,但因为有负权边的存在,局部最优不一定为全局最优,所以不能够使用Dijkstra处理。

Bellman-Ford算法对图的存储方式有点随便,并不用邻接表和邻接矩阵,直接开个数组存放即可。

Bellman-Ford算法的遍历过程有点像BFS,一层一层的遍历,更新当前节点到所连接的所有节点的dist。要注意的是,因为有负权边的存在,使得局部最短并不一定为全局最短,所以我们才需要像BFS那样的遍历方式,同时遍历每层节点所连接的所有子节点,不断的去更新对应子节点的dist,使得子节点的dist为全局最短而非局部最短。
比如下图的节点x,它对应的dist值被更新了4次,在这4次中选出最短路。
描述

通过上图也能够大致理解Bellman-Ford算法的遍历顺序,下面是具体代码实现和之中存在的问题。
主要有两个问题:

  1. 为什么需要backup数组对dist数组进行copy

主要目的是防止串联,因为是依次遍历m条边,如果不copy,则在更新了一条a->b的边后,dist[b]的值被改变,我们的目的是只改变a所连接的所有的节点的dist值,在继续向后遍历时,因为dist[b]的值被改变,则如果遍历到b->c时,dist[c]的值可能被改变,但我们并不希望如此,则需要copy一份dist,使得在遍历到b->c时,dist[b]的值没有改变,即仍为INF,所以dist[c]不会被更新。

  1. 为什么对结果要 i f ( t > I N F / / 2 ) if (t > INF // 2) if(t>INF//2)而不是直接 i f ( t = = I N F ) if (t == INF) if(t==INF)

因为有负权边,INF加了负数可能比原本的INF小了。因为copy的原因虽然最短路径没有走到这,但是还是能更新dist[n],只不过幅度较小,最后的值肯定比 I N F / / 2 INF // 2 INF//2大。

Python3

n, m, k = map(int, input().split())
g = [0 for _ in range(m+1)]
INF = 0x3f3f3f3f
d = [INF for _ in range(n+1)]
backup = []
def ballman_ford():
    d[1] = 0
    for i in range(k):
        backup = d.copy()
        for j in range(m):
            a, b, c = g[j]
            d[b] = min(d[b], backup[a] + c)
            
    return d[n]


for i in range(m):
    a, b, c = map(int, input().split())
    g[i] = [a, b, c]
    

t = ballman_ford()

if t > (INF / 2):
    print('impossible')
else:
    print(d[n])

C++

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 10010;

struct Edge
{
    int a, b, c;    
}g[N];
int dist[N];


int n, m, k;

int backup[N];

int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    
    for (int i = 0; i < k; i++)
    {
        memcpy(backup, dist, sizeof dist);
        for (int j = 0; j < m; j ++)
        {
            auto e = g[j];
            dist[e.b] = min(dist[e.b], backup[e.a] + e.c);
        }
    }
}


int main()
{
    cin >> n >> m >> k;
    for (int i = 0; i < m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        g[i] = {a, b, c};
    }
    bellman_ford();
    
    if (dist[n] > 0x3f3f3f3f / 2) cout << "impossible" << endl;
    else cout << dist[n] << endl;
    
    return 0;
}

spfa求最短路

spfa是常用的求最短路的方法了,和Dijkstra很像,也能用在有负权边的情况,算是对Bellman-Ford算法用队列优化。
思路也比较简单,就是当前节点更新了最短路,才继续遍历当前节点的子节点,不然不遍历。即通过队列,将更新过dist的节点入队,否则不入队,更有BFS的味了。

有一些疑惑的点:

  1. 为什么对结果的处理不和Bellman-Ford一样,而是直接判断是否和 f l o a t ( ′ i n f ′ ) float('inf') float(inf)相等?

因为spfa不像Bellman-Ford那样,spfa因为队列的原因,只有走到n了才更新dist[n]的值,而Bellman没走到n也可以更新到dist[n]的值,因为每一次都遍历m条边。

Python3

from collections import deque
n, m = map(int, input().split())
# 稀疏图,用邻接表存储
N = 100010
M = N * 2
h = [-1 for _ in range(N)]
e = [0 for _ in range(M)]
ne = [0 for _ in range(M)]
w = [0 for _ in range(M)]
idx = 0

d = [float('inf') for _ in range(n+1)]

def add(a, b, c):
    global idx
    e[idx] = b
    ne[idx] = h[a]
    h[a] = idx
    w[idx] = c
    idx += 1

# st存放每个点是否在队列中
st = [False for _ in range(n+1)]

# 有最短路才继续更新它连接的节点的最短路
def spfa():
    queue = deque()
    queue.append(1)
    d[1] = 0
    st[1] = True
    while queue:
        t = queue.popleft()
        i = h[t]
        st[t] = False
        while i != -1:
            j = e[i]
            if d[j] > d[t] + w[i]:
                d[j] = d[t] + w[i]
                if not st[j]:
                    queue.append(j)
                    st[j] = True
            i = ne[i]
    return d[n]
    
while m:
    m -= 1
    a, b, c = map(int, input().split())
    add(a, b, c)

t = spfa()
if t == float('inf'):
    print('impossible')
else:
    print(t)

C++

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;

int n, m;

const int N = 100010;
const int M = N;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];

bool st[N];

void add(int a, int b, int c)  // 添加一条边a->b,边权为c
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

int spfa()
{
    queue<int> q;
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        int t = q.front();
        q.pop();

        st[t] = false;
        
        for (int i =  h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return dist[n];
}


int main()
{
    memset(h, -1, sizeof h);
    cin >> n >> m;
    while (m -- )
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    
    int t = spfa();
    
    if (t == 0x3f3f3f3f)
    {
        cout << "impossible" << endl;
    }
    else
    {
        cout << t << endl;
    }
    
    return 0;
}

Floyd求最短路

暴力点的做法,时间复杂度较高,内有动态规划的味,没学,看看板子就好,感兴趣可以看看算法导论的404页有细讲,这里扣个图下来,我觉得就是核心了。
重点

这里对结果的判断原因和Bellman-Ford差不多,Floyd中会对所有的边都更新dist,所以即使没有最短边,dist中的值也会被小幅度改变,所以要用 i f ( g [ a ] [ b ] > I N F / 2 ) if(g[a][b] > INF / 2) if(g[a][b]>INF/2)的方式判断。

Python

n, m, q = map(int, input().split())
g = [[0 for _ in range(n+1)] for _ in range(n+1)]
INF = 1e9

def floyed():
    for k in range(1, n+1):
        for i in range(1, n+1):
            for j in range(1, n+1):
                g[i][j] = min(g[i][j], g[i][k] + g[k][j])



for i in range(1, n+1):
    for j in range(1, n + 1):
        if i == j:
            g[i][j] = 0
        else:
            g[i][j] = INF

while m:
    m -= 1
    a, b, c = map(int, input().split())
    
    g[a][b] = min(g[a][b], c)

floyed()

while q:
    q -= 1
    a, b = map(int, input().split())
    if g[a][b] > INF // 2:
        print('impossible')
    else:
        print(g[a][b])

C++

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 210, INF = 1e9;
int g[N][N];
int n, m, q;


void floyd()
{
    for (int k = 1; k <= n; k ++)
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++)
                g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
}

int main()
{
    cin >> n >> m >> q;
    for (int i = 1; i <= n; i ++)
        for (int j = 1; j <= n; j ++ )
            if (i == j) g[i][j] = 0;
            else g[i][j] = INF;
    
    while (m -- )
    {
        int a, b, c;
        cin >> a >> b >> c;
        g[a][b] = min(g[a][b], c);
    }
    
    floyd();
    
    while (q--)
    {
        int a, b;
        cin >> a >> b;
        if (g[a][b] > INF / 2)
            cout << "impossible" << endl;
        else
            cout << g[a][b] << endl;
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值