POJ 3592 缩点加spfa

26 篇文章 0 订阅
博客探讨了如何使用缩点和SPFA算法解决POJ 3592问题,即在含有传送门的矩阵中找到坦克能获得的最大值。文章详细介绍了构建有向图、寻找强连通分量、缩点及重构图的过程,并利用BFS算法求解从起始点到任意点的最长路径。注意在处理传送门时的边界条件和可能存在的环。
摘要由CSDN通过智能技术生成

缩点的最大好处在于把一个杂乱无章的有向图变成一个有向无环图, 而在有向无环图中,有两种点比较特殊:一种是入度为 0 的点,另一种是 出度为 0 的点。我们把入度为0的点就叫做根,出度为0的点叫做叶子!

题意:一辆坦克从N*M矩阵的左上角出发,每次往右或往下走一格,每格可以是’#’(表示不可以走),’*’表示传送门,或者是数字,表示在该格可以获得的值(只能取一次),传送门可以将到达该处的坦克传送到指定位置,你可以选择被传送或者走相邻的格,问坦克可以获得的值的和最大为多少。
分析:题目是说最终能获得的最大值,并没有指定最终要到达的位置;
因为传送门的存在,可能出现环;
算法:邻接表建立有向图;
求原图的强连通分量,缩点后重建有向图;
对重建后的有向图,利用bfs求从原图左上角点(0,0)出发的最长路(没有指定终点)

这题是盗用的人家的代码,写的风格蛮不错的,把输入,targan缩点,重新建图,bfs写的都是蛮清楚的,其中建边的时候对’*’的处理蛮可以的,先读入图,再根据”进行坐标的读入,将二维坐标转化为一维,还要注意坑就是直接跳转的地方有可能是#!!!!

#include <iostream>
#include <vector>
#include <queue>
#include <stack>
using namespace std;

const int MAX_EDGE_NUM = 50000 + 10;
const int MAX_POINT_NUM = 2200 + 10;

// 假设对边u-->v:v是被指向的点,next是从u出发的下一条边的编号 
struct EDGE
{
    int v;
    int next;
};

// 数组g和数组adj联合使用构造有向图(第一次建图) 
EDGE g[MAX_EDGE_NUM];
int adj[MAX_POINT_NUM];

// 第二次建图使用vector 
vector<int> vec[MAX_POINT_NUM];

int low[MAX_POINT_NUM];         // low[u]:是u或u的子树能追溯到的最早的栈中的节点的次序号
int dfn[MAX_POINT_NUM];         // dfn[u]:节点u搜索的次序编号(时间戳)
int sccf[MAX_POINT_NUM];        // sccf[i]:第i个点所在的强连通分量的编号
int dis[MAX_POINT_NUM];         // dis[i]:从点0到达点i所能获得的最大值
int ores[MAX_POINT_NUM];        // ores[i]:在点i能获得的值
int sum[MAX_POINT_NUM];         // 强连通分量i的煤矿总量
bool ins[MAX_POINT_NUM];        // 是否在栈中
bool inq[MAX_POINT_NUM];        // 是否在队中
int scc;                        // 强连通分量的个数
int e, index;                   // 全局临时变量
int n, m;                       // 点数  边数
stack<int> s;

void addEdge(int u, int v)
{
    g[e].v = v;
    g[e].next = adj[u];
    adj[u] = e;
    e++;
}

void Init()
{
    for (int i=1; i<=scc; ++i)
    {
        vec[i].clear();
    }
    e = scc = 0;
    index = 1;
    memset(adj, -1, sizeof(adj));
    memset(low, 0, sizeof(low));
    memset(dfn, 0, sizeof(dfn));
    memset(ins, false, sizeof(ins)); 
    memset(ores, 0, sizeof(ores));
    memset(sum, 0, sizeof(sum));
}

void RebuildMap()
{
    // 枚举每一个点u
    for (int u=0; u<n*m; ++u)
    {
        // 对每一条原始边 u-->v
        for (int k=adj[u]; k!=-1; k=g[k].next)
        {
            int v = g[k].v;
            // 新边 sccf[u]-->sccf[v]
            if (sccf[u] != sccf[v])
            {
                vec[sccf[u]].push_back(sccf[v]);
            }
        }
    }
}

void Tarjan(int u)
{
    int v;
    low[u] = dfn[u] = index++;
    s.push(u);
    ins[u] = true;

    // 枚举每一条边  
    for (int k=adj[u]; k!=-1; k=g[k].next)
    {
        v = g[k].v;
        if (0 == dfn[v])
        {
            Tarjan(v);
            if (low[v] < low[u])
            {
                low[u] = low[v];
            }
        }
        else if (ins[v] && dfn[v]<low[u])
        {
            low[u] = dfn[v];
        }
    }
    // 如果节点u是强连通分量的根  
    if (dfn[u] == low[u])
    {
        scc++;
        do
        {
            v = s.top();
            s.pop();
            ins[v]= false;
            sccf[v] = scc;
            sum[scc] += ores[v];
        }while (u != v);
    }
}

// 从第一个点开始求最长路 
void Bfs()
{
    memset(inq, false, sizeof(inq));
    memset(dis, 0, sizeof(dis));

    queue<int> q;
    q.push(sccf[0]);
    inq[sccf[0]] = true;
    dis[sccf[0]] = sum[sccf[0]];

    while (!q.empty())
    {
        int u = q.front();
        q.pop();
        inq[u] = false;
        // 对边u-->v
        for (int i=0; i<vec[u].size(); ++i)
        {
            int v = vec[u][i];
            if (dis[v] < dis[u]+sum[v])
            {
                dis[v] = dis[u] + sum[v];
                if (!inq[v])
                {
                    inq[v] = true;
                    q.push(v);
                }
            }
        }
    }
}

void Input()
{
    char map[45][45];
    int r, c, i, j;
    // 输入原始图
    scanf("%d%d", &n, &m);
    for (i=0; i<n; ++i)
    {
        scanf("%s", map[i]);
    }
    // 建立有向图
    for (i=0; i<n; ++i)
    {
        for (j=0; j<m; ++j)
        {
            if (map[i][j] != '#')
            {
                // 向下走
                if (i+1<n && map[i+1][j]!='#')
                {
                    addEdge(i*m+j, (i+1)*m+j);
                }
                // 向右走
                if (j+1<m && map[i][j+1]!='#')
                {
                    addEdge(i*m+j, i*m+j+1);
                }
                ores[i*m+j] = map[i][j] - '0';
                if ('*' == map[i][j])
                {
                    ores[i*m+j] = 0;
                    scanf("%d%d", &r, &c);
                    if ('#' != map[r][c])
                    {
                        addEdge(i*m+j, r*m+c);
                    }
                }
            }
        }
    }
}

int main()
{
    int i, cases;
    scanf("%d", &cases);
    while (cases--)
    { 
        // 数据初始化  
        Init();
        // 输入数据并建立有向图  
        Input();
        // 求强连通分量  
        for (i=0; i<n*m; ++i)
        {
            if (0 == dfn[i])
            {
                Tarjan(i);
            }
        }
        // 求得强连通分量后进行缩点,对缩点后的图利用vector进行重建  
        RebuildMap();
        // 求最长路  
        Bfs();
        // 求得最终答案并输出:最长路  
        int ans = -1;
        for (i=1; i<=scc; ++i)
        {
            if (dis[i] > ans)
            {
                ans = dis[i];
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值