BZOJ 4006: [JLOI2015]管道连接

Description

小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰。
该部门有 n 个情报站,用 1 到 n 的整数编号。给出 m 对情报站 ui;vi 和费用 wi,表示情报站 ui 和 vi 之间可以花费 wi 单位资源建立通道。
如果一个情报站经过若干个建立好的通道可以到达另外一个情报站,那么这两个情报站就建立了通道连接。形式化地,若 ui 和 vi 建立了通道,那么它们建立了通道连接;若 ui 和 vi 均与 ti 建立了通道连接,那么 ui 和 vi 也建立了通道连接。
现在在所有的情报站中,有 p 个重要情报站,其中每个情报站有一个特定的频道。小铭铭面临的问题是,需要花费最少的资源,使得任意相同频道的情报站之间都建立通道连接。

Input

第一行包含三个整数 n;m;p,表示情报站的数量,可以建立的通道数量和重要情报站的数量。接下来 m 行,每行包含三个整数 ui;vi;wi,表示可以建立的通道。最后有 p 行,每行包含两个整数 ci;di,表示重要情报站的频道和情报站的编号。

Output

输出一行一个整数,表示任意相同频道的情报站之间都建立通道连接所花费的最少资源总量。

Sample Input

5 8 4

1 2 3

1 3 2

1 5 1

2 4 2

2 5 1

3 4 3

3 5 1

4 5 1

1 1

1 2

2 3

2 4

Sample Output

4

HINT

选择 (1; 5); (3; 5); (2; 5); (4; 5) 这 4 对情报站连接。

对于 100% 的数据,0

分析

斯坦纳树问题是组合优化学科中的一个问题。将指定点集合中的所有点连通,且边权总和最小的生成树称为最小斯坦纳树(Minimal Steiner Tree),其实最小生成树是最小斯坦纳树的一种特殊情况。而斯坦纳树可以理解为使得指定集合中的点连通的树,但不一定最小。

2. 如何求解最小斯坦纳树?
可以用DP求解,dp[i][state]表示以i为根,指定集合中的点的连通状态为state的生成树的最小总权值。
转移方程有两重:
第一重,先通过连通状态的子集进行转移。
dp[i][state]=min{ dp[i][subset1]+dp[i][subset2] }
枚举子集的技巧可以用 for(sub=(state-1)&state;sub;sub=(sub-1)&state)。

  第二重,在当前枚举的连通状态下,对该连通状态进行松弛操作。
  dp[i][state]=min{ dp[i][state], dp[j][state]+e[i][j] }
  为什么只需对该连通状态进行松弛?因为更后面的连通状态会由先前的连通状态通过第一重转移得到,所以无需对别的连通状态松弛。松弛操作用SPFA即可。

  复杂度 O(n*3^k+cE*2^k)
  c为SPFA复杂度中的常数,E为边的数量,但几乎达不到全部边的数量,甚至非常小。3^k来自于子集的转移sum{C(i,n)*2^i} (1<=i<=n),用二项式展开求一下和

代码

#include <bits/stdc++.h>

using namespace std;
const int maxn=1051;
const int inf=0x7fffffff/2-1;
int n,m,tot=0,h[maxn],dp[maxn][maxn];
struct edge{int to,next,w;}G[100001];
int ans[maxn],sum[maxn],K,tmp[11],S;
struct point{int col,w;}p[maxn];
bool vis[maxn];

bool check(int s){
    for (int i=1;i<=10;++i) tmp[i]=0;
    for (int i=1;i<=K;++i) 
        if (s&(1<<(i-1))) tmp[p[i].col]++;
    for (int i=1;i<=10;++i) if (tmp[i]&&tmp[i]!=sum[i]) return 0;
    return 1;
}

void add(int x,int y,int z){
    G[++tot].to=y;G[tot].next=h[x];h[x]=tot;G[tot].w=z;
    G[++tot].to=x;G[tot].next=h[y];h[y]=tot;G[tot].w=z;
}

void spfa(int s){
    queue<int>q; 
    for (int i=1;i<=n;++i) vis[i]=1,q.push(i);
    while (!q.empty()){
        int u=q.front(); q.pop(); vis[u]=0;
        for (int i=h[u];i;i=G[i].next){
            int v=G[i].to;
            if (dp[u][s]+G[i].w<dp[v][s]){
                dp[v][s]=dp[u][s]+G[i].w;
                if (!vis[v]) vis[v]=1,q.push(v);
            }
        }
    }
}

int main(){
    scanf("%d%d%d",&n,&m,&K);
    for (int i=1;i<=m;++i){
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
    }
    S=1<<K;
    for (int i=1;i<=n;++i)
        for (int j=0;j<S;++j) dp[i][j]=inf;
    for (int s=0;s<S;++s) ans[s]=inf;
    for (int i=1;i<=K;++i) scanf("%d%d",&p[i].col,&p[i].w),sum[p[i].col]++;
    for (int i=1;i<=K;++i) dp[p[i].w][1<<(i-1)]=0;
    for (int s=0;s<S;++s){
        for (int i=1;i<=n;++i) 
            for (int s0=s;s0;s0=(s0-1)&s)
                dp[i][s]=min(dp[i][s],dp[i][s0]+dp[i][s^s0]);
        spfa(s);
    }
    for (int s=0;s<S;++s)
        for (int i=1;i<=n;++i) ans[s]=min(ans[s],dp[i][s]);
    for (int s=0;s<S;++s)
        if (check(s))
            for (int s0=s;s0;s0=(s0-1)&s)
                if (check(s0)) 
                    ans[s]=min(ans[s],ans[s0]+ans[s^s0]);
    printf("%d",ans[(1<<K)-1]);
}
发布了323 篇原创文章 · 获赞 11 · 访问量 7万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览