BZOJ4006 [JLOI2015]管道连接

f[i]表示令i这个颜色集合里的所有颜色都满足同颜色联通的最小代价

则f[i]=min(g[i],f[i^j]+f[j])g[i]为对这些点做斯坦纳树,j为i的子集

#include<iostream>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<cstdlib>
#include<cstdio>
#include<map>
#include<bitset>
#include<set>
#include<stack>
#include<vector>
#include<queue>
using namespace std;
#define MAXN 1010
#define MAXM 3010
#define MAXD 1100
#define ll long long
#define eps 1e-8
#define MOD 1000000007
#define INF 1000000000
struct vec{
	int to;
	int fro;
	int v;
};
vec mp[MAXM*2];
int tai[MAXN],cnt;
int n,m,p;
vector<int>ps[20];
int f[MAXD];
int g[MAXD][MAXN];
int col[MAXN],c;
int t[MAXN],tot;
int q[MAXN],hd,tl;
bool iq[MAXN];
int nc[MAXN],NC;
int num[MAXN];
inline void be(int x,int y,int z){
	mp[++cnt].to=y;
	mp[cnt].fro=tai[x];
	tai[x]=cnt;
	mp[cnt].v=z;
}
inline void bde(int x,int y,int z){
	be(x,y,z);
	be(y,x,z);
}
void spfa(int *g){
	int i,x,y;
	while(hd!=tl){
		iq[x=q[(hd%=MAXN)++]]=0;
		for(i=tai[x];i;i=mp[i].fro){
			y=mp[i].to;
			if(g[x]+mp[i].v<g[y]){
				g[y]=g[x]+mp[i].v;
				if(!iq[y]){
					iq[q[(tl%=MAXN)++]=y]=1;
				}
			}
		}
	}
}
int cal(){
	int i,j,k;
	int T=1<<tot;
	for(i=1;i<T;i++){
		for(j=1;j<=n;j++){
			g[i][j]=INF;
			if(nc[j]==NC){
				if(i==(1<<num[j]-1)){
					g[i][j]=0;
				}
			}
			for(k=i&i-1;k;k=i&k-1){
				g[i][j]=min(g[i][j],g[k][j]+g[i^k][j]);
			}
			if(g[i][j]!=INF){
				iq[q[(tl%=MAXN)++]=j]=1;
			}
		}
		spfa(g[i]);
	}
	int re=INF;
	for(i=1;i<=n;i++){
		re=min(re,g[T-1][i]);
	}
	return re;
}
int main(){
	int i,j,k,x,y,z;
	scanf("%d%d%d",&n,&m,&p);
	for(i=1;i<=m;i++){
		scanf("%d%d%d",&x,&y,&z);
		bde(x,y,z);
	}
	for(i=1;i<=p;i++){
		scanf("%d%d",&x,&y);
		ps[x].push_back(y);
	}
	for(i=1;i<=p;i++){
		if(ps[i].size()>1){
			col[++c]=i;
		}
	}
	int C=1<<c;
	for(i=1;i<C;i++){
		tot=0;
		NC++;
		for(j=1;j<=C;j++){
			if(i&(1<<j-1)){
				for(k=0;k<ps[col[j]].size();k++){
					tot++;
					nc[ps[col[j]][k]]=NC;
					num[ps[col[j]][k]]=tot;
				}
			}
		}
		f[i]=cal();
	}
	for(i=1;i<C;i++){
		for(j=i&i-1;j;j=i&j-1){
			f[i]=min(f[i],f[j]+f[i^j]);
		}
	}
	printf("%d\n",f[C-1]);
	return 0;
}

/*
5 8 4
1 2 3
1 3 2
1 5 1
2 4 2
2 5 1
3 4 3
3 5 1
4 5 1
1 1
1 2
2 3
2 4
*/


发布了404 篇原创文章 · 获赞 120 · 访问量 32万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览