[JLOI2015] 管道连接

本文介绍了一种解决特定斯坦纳树问题的方法,该问题要求在考虑点频率的情况下找到连接特定节点集合的最小代价路径。文章提供了详细的算法实现,包括使用子集DP优化斯坦纳树森林的构建过程。

题目描述:

给出一张图
给出若干个点和其频率,要求相同频率的点可以连通,求最小代价。

题目分析:

观察到带频率的点数很少,只有10个左右
那我们就可以做斯坦纳树
这些相同频率的点形成一个斯坦纳树,其实最后形成的是个斯坦纳树森林,所以最后要搞一下子集DP(雾

题目链接:

Luogu 3264
BZOJ 4006

Ac 代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstring>
#include <vector>
const int maxm=6000; 
std::vector <int> p[20];
std::queue <int> dl;
int inf;
int f[maxm][1<<10],g[1<<10],n,m,num;
int head[maxm],to[maxm<<1],net[maxm<<1],cost[maxm<<1],cnt;
bool vis[maxm];
int pos[20],w[2000];
int point[20];
void addedge(int u,int v,int c)
{
    cnt++;
    to[cnt]=v,cost[cnt]=c,net[cnt]=head[u],head[u]=cnt;
}
void spfa(int sta)
{
    while(!dl.empty()) dl.pop();
    for(int i=1;i<=n;i++) 
     if(f[i][sta]<inf) dl.push(i),vis[i]=1;
    while(!dl.empty())
    {
        int x=dl.front();
        dl.pop();
        vis[x]=0;
        for(int i=head[x];i;i=net[i])
        if(f[to[i]][sta]>f[x][sta]+cost[i])
        {
            f[to[i]][sta]=f[x][sta]+cost[i];
            if(!vis[to[i]]) vis[to[i]]=1,dl.push(to[i]);
        }
    }
}
bool check(int sta)
{
    for(int i=0;i<num;i++)
    if((sta>>i)&1)
    {
        int poi=pos[i+1];
        for(int j=0;j<p[poi].size();j++)
         if(!((1<<(p[poi][j]-1))&sta)) return 0;
    }
    return 1;
}
int main()
{
    scanf("%d%d%d",&n,&m,&num);
    for(int i=1;i<=m;i++)
    {
        int u,v,c;
        scanf("%d%d%d",&u,&v,&c);
        addedge(u,v,c),addedge(v,u,c);
    }
    for(int i=1;i<=num;i++)
    {
        int dx,id;
        scanf("%d%d",&dx,&id);
        w[id]=i;
        p[dx].push_back(i);
        pos[i]=dx;
        point[i]=id;
    }
    memset(f,127/3,sizeof(f)),memset(g,127/3,sizeof(g));
    inf=f[0][0];
    for(int i=1;i<=num;i++)
    {
        int nowd=point[i];
        f[nowd][1<<(w[nowd]-1)]=0;
    }
    for(int s=0;s<(1<<num);s++)
    {
        for(int i=1;i<=n;i++)
         for(int j=s&(s-1);j;j=(j-1)&s)
          f[i][s]=std::min(f[i][s],f[i][j]+f[i][s-j]);
        spfa(s);
        for(int i=1;i<=n;i++) g[s]=std::min(g[s],f[i][s]);
    }
    for(int s=0;s<(1<<num);s++)
     for(int i=s&(s-1);i;i=(i-1)&s)
      if(check(i)&&check(s-i))
       g[s]=std::min(g[s],g[i]+g[s-i]);
    printf("%d\n",g[(1<<num)-1]);
    return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值