最短路之Bellman-Ford算法

这都是好早以前看的东西了…..好久不用来刷题都忘了啥意思了…..
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:
d(v) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
以后学习完一个代码一定要好好记录一下自己当时怎么想的
附上代码:


/*
时间复杂度:O(NM)
适用情况:稀疏图,和边关系密切
可以解决负权
*/
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e2+5;
const int INF=0x3f3f3f3f;
vector<int> d;
vector<pair<int,int> >E[maxn];
int n,m;

/*Bellman-Ford算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:
d(v) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。*/

void init() {
    for(int i=0;i<maxn;i++) E[i].clear();
    d.resize(maxn);
    for(int i=0;i<maxn;i++)d[i]=INF;
}

int main()
{
    cin>>n>>m;
    init();
    for(int i=0;i<m;i++) {
            int u,v,s;
            cin>>u>>v>>s;
            E[u].push_back(make_pair(v,s));
            E[v].push_back(make_pair(u,s));
    }
    int s,t;
    cin>>s>>t;
    d[s]=0;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++) {
            for(int k=0;k<E[j].size();k++){
                if(d[E[j][k].first]>E[j][k].second+d[j]){
                    d[E[j][k].first]=E[j][k].second+d[j];
                }
            }
        }
    }
    for(int i=1;i<=n;i++){
        for(int j=0;j<E[i].size();j++) {
            if(d[E[i][j].first]>E[i][j].second+d[i]) {
                cout<<-1<<endl;
                return 0;
            }
        }
    }
    for(int i=1;i<=n;i++)
    cout<<d[i]<<endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值