通常,正整数
n
的阶乘是所有小于或等于n
的正整数的乘积。例如,factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
。相反,我们设计了一个笨阶乘
clumsy
:在整数的递减序列中,我们以一个固定顺序的操作符序列来依次替换原有的乘法操作符:乘法(*),除法(/),加法(+)和减法(-)。例如,
clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
。然而,这些运算仍然使用通常的算术运算顺序:我们在任何加、减步骤之前执行所有的乘法和除法步骤,并且按从左到右处理乘法和除法步骤。另外,我们使用的除法是地板除法(floor division),所以
10 * 9 / 8
等于11
。这保证结果是一个整数。实现上面定义的笨函数:给定一个整数
N
,它返回N
的笨阶乘。示例 1:
输入:4 输出:7 解释:7 = 4 * 3 / 2 + 1
示例 2:
输入:10 输出:12 解释:12 = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
1 1
2 2*1
3 3*2/1
4 4*3/2 +1
5 5*4/3 +2-1
6 6*5/4 +3-2*1
7 7*6/5 +4-3*2/1
8 8*7/6 +5-4*3/2+ 1
9 9*8/7 +6-5*4/3+ 2-1
10 10*9/8 +7-6*5/4+ 3-2*1
我们看到这道题目,肯定会猜测这里面有循环节,*/+-我们必然是用这四个符号之一进行循环,该用什么呢?我们用乘或除肯定是不行的,这样不符合四则运算的规律,例如10的笨阶乘为10*9/8+7-6*5/4+3-2*1,用乘循环就是这样的10*(9/8+7-6)*(5/4+3-2)*1,显然是不对的,所以我们只能用加减来循环,依然是上面例子,我们用减循环(10*9/8+7)-(6*5/4+3)-2*1,显然也不对,我们只能用加循环了,我们看一下(10*9/8)+(7-6*5/4)+(3-2*1),符合四则运算规律。我们开头的符号是*/我们先将他们算出来,然后再用加递归计算解。
class Solution {
public:
int clumsy(int N) {
if(N==1)return N;
if(N==2)return N*(N-1);
if(N==3)return N*(N-1)/(N-2);
return N*(N-1)/(N-2)+cal(N-3);
}
int cal(int x){
if(x==0)return 0;
if(x==1)return x;
if(x==2)return x-(x-1);
if(x==3) return x-(x-1)*(x-2);
return x-(x-1)*(x-2)/(x-3)+cal(x-4);
}
};
我们也可以把代码里面的计算出来
class Solution {
public:
int clumsy(int N) {
if(N==1)return 1;
if(N==2)return 2;
if(N==3)return 6;
return N*(N-1)/(N-2)+cal(N-3);
}
int cal(int x){
if(x==0)return 0;
if(x==1)return 1;
if(x==2)return 1;
if(x==3)return 1;
return x-(x-1)*(x-2)/(x-3)+cal(x-4);
}
};