Spark Streaming实战之黑名单过滤

1.需求场景

访问日志:

201801,zs
201802,ls
201803,ww
.....

黑名单:

zs,ls...

现在需要把黑名单中的人从访问日志中给过滤掉,然后得到一份新的访问日志

2.思路分析

要实现上边的需求,首先要进行思路分析,即如何实现

我们可以把黑名单数据先变成一个RDD,将它变成(zs,true) (ls,true)这样的形式,然后再将访问日志变成(zs,<201801,zs>) (ls,<201802,ls>)  (ww,<201803,ww>)的形式,使用leftjoin把它们变成(zs,[<201801,zs>,true]) (ls,[<201802,ls>,true])  (ww,[<201803,ww>,true])的形式,如果是true的话就输出

3.代码实现

package cn.ysjh

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object TranFormSpark {

  def main(args: Array[String]): Unit = {

    val cf: SparkConf = new SparkConf().setAppName("TranForm").setMaster("local[2]")

    val stream: StreamingContext = new StreamingContext(cf,Seconds(5))


    /*
    构建黑名单
     */
    val block = List("zs","ls")

    val blocks: RDD[(String, Boolean)] = stream.sparkContext.parallelize(block).map(x => (x,true))


    val socket: ReceiverInputDStream[String] = stream.socketTextStream("192.168.220.134",6789)

    val result: DStream[String] = socket.map(x => (x.split(",")(1), x)).transform(rdd => {
      rdd.leftOuterJoin(blocks)
        .filter(x => x._2._2.getOrElse(false) != true)
        .map(x => x._2._1)
    })
    
    result.print()

    
    stream.start()

    stream.awaitTermination()


  }

}

4.运行测试

在虚拟机中使用nc来输送socket数据,,然后看在IDEA中Spark Streaming程序的运行结果

 

展开阅读全文

没有更多推荐了,返回首页