求模乘法逆元

一、(解存在判定原理) 有限域Z(b)(b>0),对于任意整数a,若gcd(a,b)=1,则a在有限域中存在唯一的逆元x(a^-1)即a*x=1(mod b),求x

二、对于任意不同时为零的正整数a,b 求满足方程a*x+b*y=gcd(a,b)的解(x,y)。

这两种描述其实是等价的。

对于方程a*x+b*y=gcd(a,b),我们可以这样方程两边同除以gcd(a,b)得

a1*x+b1*y=1;其中a1=a/gcd(a,b) , b= b/gcd(a,b).

则gcd(a1,b1)=1;

a1*x=1-b1*y----->a1=1(mod b1)

反之亦然。

 

a*x+b*y=1( gcd(a,b)=1) 的通解为

x=x0+b*i

y=y0-a*i

证明:

设(x1,y1),(x2,y2)为方程的两组解

则a*x1+b*y1=a*x2+b*y2

->a*(x1-x2)=b*(y2-y1)

->b|[a*(x1-x2)] , gcd(a,b)=1

->b|(x1-x2)

->x2=x1+b*i;

x2代入原方程,要使方程恒立则

y2=y1-a*i;

一般化的方程a*x+b*y=c   (gcd(a,b)|c)通解为

x=x0+b/gcd(a,b)*i

y=y0-a/gcd(a,b)*i

x0,y0为a1*x+b1*y=c1的特解扩大c/gcd(a,b)倍

a1,b1,c1是a,b,c除以gcd(a,b)的结果。


exgcd()求解过程:

因为

d=gcd(a,b)=gcd(b,a%b),d=a*x+b*y

d=b*x1+(a-int(a/b)*b)*y1=a*y1+(x1-a/b*y1)

所以

x=y1

y1=x1-a/b*y1

求解模乘法逆元的代码:

 

实例:poj1061

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值