项目实训 --主观题阅卷评分网站(三)

学习过程:

近期通过查阅论文以及上网翻阅资料,查阅文献,我对完成课题所使用的神经网络模型推导和pytorch原理有了大致的了解。
主要关注了以下概念
深度学习之BP算法
梯度下降与随机梯度下降概念及推导过程:
Pytorch实现RNN:
RNN教程之-2 LSTM实战:
主要参考的文献:深度学习之自然语言处理进阶

项目进度:

目前我的主要工作为完成生成的问题集合的问题第一次筛选,主要实现思路为将参考答案和带标记的正确答案使用word2vec的分布式表示为空间中的n维向量,并以问题q为划分对象,从而达到筛选出优秀的q的作用。
表示过程:使用cbow模型
图示过程:
在这里插入图片描述

关键代码:

# 读入数据
corpus, word_to_id, id_to_word = ptb.load_data('train')
vocab_size = len(word_to_id)

contexts, target = create_contexts_target(corpus, window_size)
if config.GPU:
    contexts, target = to_gpu(contexts), to_gpu(target)

# 生成模型等
model = CBOW(vocab_size, hidden_size, window_size, corpus)
# model = SkipGram(vocab_size, hidden_size, window_size, corpus)
optimizer = Adam()
trainer = Trainer(model, optimizer)

# 开始学习
trainer.fit(contexts, target, max_epoch, batch_size)
trainer.plot()

训练结果(部分):

day [-0.10517368 -0.11767567 -0.08770754 -0.08608673  0.1416603   0.12295089
  0.12176713 -0.15600257 -0.13488823  0.10433038 -0.11382852  0.11108447
  0.10454829  0.14350444 -0.0919579  -0.11685202 -0.11281923  0.10545972
 -0.12588383 -0.13928771 -0.12421538 -0.12743862  0.14197709  0.13545138
  0.09636388  0.14729802  0.12356224 -0.1310601  -0.11960482 -0.0868628
 -0.1253302  -0.11179367 -0.10483316  0.13274033  0.12030896 -0.14628492
 -0.13341272  0.11815492  0.16607009  0.1374148   0.11466035  0.11782282
 -0.09025079  0.12452562  0.08582853  0.11918545  0.08405499 -0.07441092
  0.12264467  0.12176208  0.10547844  0.11072478 -0.14566886  0.12585992
  0.13482785  0.11935122  0.08624908  0.10331067 -0.12355839  0.10343292
  0.12569971 -0.10155733 -0.11112247 -0.10061409  0.12013828  0.10144176
  0.12023008 -0.13868822  0.11454513  0.09895245  0.11617471 -0.11939891
  0.11349303 -0.13481392 -0.10593541  0.09760397  0.12053981 -0.10121962
 -0.11299989 -0.11750894 -0.11038833  0.11607917 -0.11827555  0.12450801
 -0.07779734 -0.11477651  0.12159468  0.10950866  0.12041226  0.11615779
  0.11896573  0.11957716  0.12469604  0.11058014 -0.10453165 -0.1114757
  0.1147315   0.1269861   0.1373257   0.12466712]
days [-0.18234362 -0.17784251 -0.14497586 -0.14459954  0.18304142  0.16626157
  0.13798636 -0.18846454 -0.19211729  0.15492904 -0.15686871  0.15788968
  0.17225228  0.18458408 -0.16689463 -0.12362264 -0.15635088  0.1672898
 -0.16362582 -0.17262168 -0.15584452 -0.18600425  0.15711908  0.17349496
  0.16788934  0.16680212  0.2016448  -0.17601967 -0.14748904 -0.16601637
 -0.1636122  -0.18051462 -0.12198152  0.1764061   0.18702173 -0.17925723
 -0.18451986  0.16599563  0.17094922  0.19764766  0.1548859   0.17285578
 -0.1474535   0.18246648  0.13471271  0.18385014  0.14013349 -0.12104414
  0.17972319  0.19462992  0.1564441   0.16953212 -0.15377274  0.18620114
  0.16093694  0.1384015   0.11233116  0.17702718 -0.1724721   0.16897923
  0.15310827 -0.18576346 -0.15209974 -0.14923184  0.16177008  0.17033686
  0.17249553 -0.16442464  0.17219548  0.14163621  0.17466311 -0.16299516
  0.15300398 -0.17007    -0.17571868  0.1432558   0.19443046 -0.14902169
 -0.15417525 -0.158104   -0.16867223  0.17328519 -0.1458271   0.14065516
 -0.16011505 -0.14400116  0.15340543  0.18147193  0.16297258  0.15671502
  0.1834074   0.18648192  0.14913751  0.17229477 -0.16046892 -0.16286874
  0.17249443  0.1598189   0.15457755  0.15544735]
longest [-0.11369815 -0.12043431 -0.092557   -0.09817025  0.0974712   0.11953922
  0.09050267 -0.12989983 -0.12739237  0.09770411 -0.09124913  0.11923231
  0.10500139  0.12321769 -0.10178895 -0.08414653 -0.11140335  0.11064935
 -0.11910009 -0.13029186 -0.0819956  -0.14623053  0.10746644  0.11411982
  0.07777556  0.11455971  0.10285854 -0.13111994 -0.09939577 -0.0969635
 -0.09044521 -0.12611853 -0.07721555  0.13274965  0.1429023  -0.11630544
 -0.12039573  0.0967311   0.10126024  0.09217947  0.09140108  0.12022021
 -0.10746413  0.11575451  0.10332521  0.10784137  0.12165492  0.01202166
  0.12645924  0.10078685  0.11007548  0.10907505 -0.12435152  0.11719389
  0.11280338  0.1236036   0.07933119  0.10591829 -0.134402    0.1064928
  0.09698504 -0.09272131 -0.11048459 -0.0654592   0.10098593  0.12799956
  0.11465398 -0.1242158   0.09071227  0.11518865  0.11822289 -0.11066255
  0.09791093 -0.10014951 -0.10658889  0.08308181  0.10707423 -0.11712457
 -0.08655006 -0.08509547 -0.11665813  0.11491272 -0.10555442  0.11709879
 -0.1214956  -0.11386202  0.12710302  0.130108    0.10406311  0.11363877
  0.08845831  0.1340862   0.04878733  0.10403565 -0.11301355 -0.10326528
  0.08017147  0.09825292  0.12335542  0.10292899]

此数据集为PTB数据集,待在自己的中文问题数据集上进行分布式表示和分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值