uva 1336 - Fixing the Great Wall 修缮长城


题目:点我



状态表示很难,因为走的路线是来回路,要么往左走,要么往右走,而且只要是经过的坏点,都会被修缮。

所以被修缮的点的范围是从起点开始逐渐扩大而不会缩小的。


dp[le][ri][0]表示已经修完了[le,ri]区间内的点,现在在le点处。

dp[le][ri][1]表示已经修完了[le,ri]区间内的点,现在在ri点处。


因为修完[le,ri]区间内的点后 一定在这两点之一。


之后不是往左走,就是往右走,但是因为用的方法是递推,我们每次只用向左或向右走一步。





/**==========================================
 *   This is a solution for ACM/ICPC problem
 *
 *   @source:uva 1336 Fixing the Great Wall
 *   @type:
 *   @author: wust_ysk
 *   @blog:  http://blog.csdn.net/yskyskyer123
 *   @email: 2530094312@qq.com
 *===========================================*/
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#define eps 1e-10
using namespace std;
typedef long long ll;
const double inf=1e15;
const int maxn= 1000   ;
//const int maxV=12    ;
int n,startPos;
double dp[maxn+4][maxn+4][2];
double v;
int sum[maxn+4];
struct Node
{
    int pos,cost,add;
    bool operator<(const Node y)const
    {
        return pos<y.pos;
    }
}a[maxn+5];
int main()
{
    int x;
    while(~scanf("%d%lf%d",&n,&v,&startPos)&&(n||v||startPos ))
    {
        a[0].pos=startPos;
        a[0].add=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d%d",&a[i].pos,&a[i].cost,&a[i].add);
        }
        sort(a,a+1+n);
        for(int i=0;i<=n;i++)
        {
            if(!i)  sum[i]=a[i].add;
            else  sum[i]=sum[i-1]+a[i].add;
            if(a[i].pos==startPos)
            {
                x=i;
            }
        }
        for(int i=0;i<=n;i++)
        {
            for(int j=i;j<=n;j++)
            {
                dp[i][j][0]=dp[i][j][1]=inf;
            }
        }

        dp[x][x][0]=dp[x][x][1]=0;

        for(int add=0;add<n;add++)
        {
            for(int st=0 ;st+add<=n  ;st++)
            {
                int ed=st+add;
                for(int k=0;k<=1;k++)  if(dp[st][ed][k]!=inf)
                {
                    int p=k?ed :st;

                     if(st-1>=0)
                    {
                        int des=st-1;
                        double ans=dp[st][ed][k];
                        double t=  (a[p].pos-a[des].pos)/v;
                        ans+=  a[des].cost+  t*( sum[n]-sum[ed]+sum[st-1] );

                       dp[st-1][ed][0]=min(dp[st-1][ed][0],ans);
                    }

                    if(ed+1<=n)
                    {
                        int des=ed+1;
                        double ans=dp[st][ed][k];
                        double t=  (a[des].pos-a[p].pos)/v;
                        ans+=  a[des].cost+  t*( sum[n]-sum[ed]+ (st-1>=0?sum[st-1]:0) );

                       dp[st][ed+1][1]=min(dp[st][ed+1][1],ans);
                    }

                }
            }
        }
        ll ans= min(dp[0][n][0],dp[0][n][1])+eps;//加不加eps均可AC
        printf("%lld\n",ans);




    }

   return 0;
}

/*

3 1 1000
1010 0 100
998 0 300
996 0 3

3 1 1000
1010 0 100
998 0 3
996 0 3
0 0 0

*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值