UVA 10674 Tangents 求两圆切线

本文提供了一种计算两圆间所有可能切线的算法实现,包括内切与外切情况。通过C++代码展示了如何根据两个圆的位置和半径确定它们之间的切点,并输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


给出两圆求切线。一顿套模板,结果完全按照大白来好像过不了...




#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<vector>
#include<fstream>
using namespace std;

#define all(x) (x).begin(), (x).end()
#define for0(a, n) for (int (a) = 0; (a) < (n); (a)++)
#define for1(a, n) for (int (a) = 1; (a) <= (n); (a)++)
#define sqr(x) ((x)*(x))
#define zero(A) ((fabs(A.c.x)<eps)&&(fabs(A.c.y)<eps)&&(fabs(A.r)<eps))
typedef long long ll;
typedef pair<int, int> pii;
const int INF =0x3f3f3f3f;
const double eps=1e-10;
const double PI=4.0*atan(1.0);

int dcmp(double x)
{
    if(fabs(x)<eps)  return 0;
    else return x<0?-1:1;
}

struct Point
{
    double x,y;
    Point(double x=0,double y=0):x(x),y(y) {};
    bool operator < (const Point& e) const
   {
    return dcmp(x - e.x) < 0 || (dcmp(x - e.x) == 0 && dcmp(y - e.y) < 0);
   }
};




typedef Point Vector;
Vector operator +(Vector A,Vector B) {return Vector(A.x+B.x,A.y+B.y); }
Vector operator -(Vector A,Vector B) {return Vector(A.x-B.x,A.y-B.y); }
Vector operator *(Vector A,double p) {return Vector(A.x*p,A.y*p); }
Vector operator /(Vector A,double p) {return Vector(A.x/p,A.y/p); }
Vector operator -(Vector A)  {return  Vector(-A.x,-A.y);}

struct Circle
{
    Point c;
    double r;
    Circle(){}
    Circle(Point c,double r):c(c),r(r){}
    Point point(double a)
    {
        return Point(c.x+cos(a)*r,c.y+sin(a)*r);
    }
};
struct Line
{
    Point p;
    Vector v;
    Line(Point p,Vector v):p(p),v(v){}
    Point point(double t)
    {
        return p+v*t;
    }
};
int getTangents(Circle A,Circle B,Point *a,Point *b)
{
    int cnt=0;
    if(dcmp(A.r - B.r) < 0){//不清楚这题为什么必须加这句话才能过?加了应该要换回来。
        swap(A, B);
        swap(a, b);
    }
    double d=sqrt((A.c.x-B.c.x)*(A.c.x-B.c.x)+(A.c.y-B.c.y)*(A.c.y-B.c.y));
    double rdiff=fabs(A.r-B.r);
    double rsum=A.r+B.r;
    if(dcmp(d - rdiff) < 0) return 0;
    double base=atan2(B.c.y-A.c.y,B.c.x-A.c.x);
    double base2=atan2(A.c.y-B.c.y )
    if(dcmp(d) == 0)  return -1;
    if(dcmp(d - rdiff) == 0)
    {
        a[cnt]=A.point(base);b[cnt]=B.point(base);cnt++;
        return 1;
    }
    double ang=acos( abs(A.r-B.r)/d );
    a[cnt]=A.point(base+ang);b[cnt]=B.point(base+ang);cnt++;
    a[cnt]=A.point(base-ang);b[cnt]=B.point(base-ang);cnt++;
    if(dcmp(d - rsum) == 0)
    {
        a[cnt]=A.point(base);
        b[cnt]=B.point(PI+base);
        cnt++;
    }
    else if(dcmp(d - rsum) > 0)
    {
        double ang=acos( (A.r+B.r)/d );
        a[cnt]=A.point(base+ang);b[cnt]=B.point(PI+base+ang);cnt++;
        a[cnt]=A.point(base-ang);b[cnt]=B.point(PI+base-ang);cnt++;
    }
    return cnt;

}


double dis(Point a,Point b)
{
    return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));
}
int main()
{
   std::ios::sync_with_stdio(false);
   Circle A, B;

   while(cin>>A.c.x>>A.c.y>>A.r>>B.c.x>>B.c.y>>B.r)
   {
         if( zero(A)&&zero(B)  ) break;
         Point a[4],b[4];
         int ans=getTangents(A, B,a,b);
         if(ans==-1)
         {
             puts("-1");
             continue;
         }
         printf("%d\n",ans);
         for(int i=0;i<ans;i++)
         {
             for(int j=ans-1;j>i;j--)
             {
                 if(a[j]<a[j-1] )
                 {
                     swap(a[j-1],a[j]);
                     swap(b[j-1],b[j]);
                 }
             }
         }

         for0(i,ans)
         {
             printf("%.5f %.5f %.5f %.5f %.5f\n",a[i].x,a[i].y,b[i].x,b[i].y,dis(a[i],b[i])  );
         }

   }
   return 0;
}


在C#中,两个圆的公切线通常涉及到一些几何计算,特别是当这两个圆没有交点且不相切时。这里我们可以假设我们有两个圆形,每个圆由一个中心点和半径定义。一种常见的方法是使用向量数学和欧几里得算法。 首先,我们需要获取两个圆心之间的距离(`DistanceBetweenCenters`函数),然后检查这个距离是否大于等于两个圆的半径之和或小于等于两者之差: 1. 如果距离大于半径之和,说明两个圆外离,没有公切线。 2. 如果距离等于半径之和,有两条公切线,一条垂直于它们连线,另一条平行于这条连线。 3. 如果距离小于半径之差,说明圆内切,有一条唯一的公切线,即通过两个圆心的直线。 对于实际的切线计算,你需要做以下步骤: - 确定两个圆心的向量。 - 计算这两个向量的方向向量。 - 根据情况确定切线方向:如果两个圆外离,切线分别沿着两个向量;如果是内切,只有一条切线沿向量反向;如果外切,一条沿向量,另一条垂直于向量。 - 使用点到直线的距离公式找到切点,然后连接这两个切点得到切线。 以下是一个简化版伪代码示例: ```csharp public Vector2[] FindCommonTangents(Circle circle1, Circle circle2) { Vector2 centerDifference = circle2.Center - circle1.Center; double distance = centerDifference.Length(); if (distance > circle1.Radius + circle2.Radius) return new[] { null, null }; // No common tangents (outer circles) else if (distance == circle1.Radius + circle2.Radius) { // Tangent case: two tangents Vector2 tangentDirection1 = centerDifference / distance; // Parallel to line between centers Vector2 tangentDirection2 = tangentDirection1.Perpendicular(); // Perpendicular to first tangent // Calculate intersection points for each tangent // ... return new[] { tangentPoint1, tangentPoint2 }; } else // If they're inner circles, only one common tangent { // Tangent direction is along the line connecting centers Vector2 tangentDirection = centerDifference / distance; // Calculate intersection point for single tangent // ... return new[] { tangentPoint }; } } // Helper functions Vector2.Perpendicular() 和 PointOnLine() ``` 别忘了实现 `PointOnLine()` 函数来找出给定向量上经过特定点的切线位置。这需要应用一些代数知识,比如解二次方程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值