这里写目录标题
基数排序(桶排序)介绍:
1)基数排序(基数排序)属于“分配式排序”(分布),又称“桶子法”(桶排序)或本,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用
2)基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
3)基数排序(基数排序)是桶排序的扩展
4基数排序是1887年赫尔曼。何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较。
基数排序排序基本思想
1)将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
基数排序讲解
原来的数组arr = {53,3,542,748,14,214}
代码
package com.atguigus.sort;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
public class RadixSort {
public static void main(String[] args) {
// int arr[] = {53,3,542,748,14,214};
int [] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int)(Math.random()*8000000);
}
System.out.println("排序前:");
// System.out.println(Arrays.toString(arr));
Date date = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String dateStr = simpleDateFormat.format(date);
System.out.println(String.format("排序前时间%s", dateStr));
radixSort(arr);
System.out.println("排序后:");
Date date2 = new Date();
String date2Str = simpleDateFormat.format(date2);
System.out.println(String.format("排序前时间%s", date2Str));
// System.out.println(Arrays.toString(arr));
}
//基数排序方法
public static void radixSort(int[] arr){
//根据前面的推到过程,我们可以得到最终的基数排序代码
//1.得到数组中最大的数的位数
int max = arr[0];
for (int i = 0; i < arr.length; i++) {
if (arr[i] > max){
max = arr[i];
}
}
//得到最大数是几位数
int maxLength = (max + "").length();
//定义一个二维数组,表示10个桶每个桶就是一个一维数组
int[][] bucket = new int[10][arr.length];
//记录每个桶中放的数据的个数,放到数组里面
int[] bucketElementCount = new int[10];
for (int i = 0 ,n = 1; i < maxLength; i++,n *= 10) {
//(针对每个元素的对应的为进行排序处理),第一次是个位,第二次是十位,第三次是百位
for (int j = 0; j < arr.length; j++) {
//取出每个元素对应的位数的值
int digitOfElement = arr[j] / n % 10;
//放入到对应的桶中
bucket[digitOfElement][bucketElementCount[digitOfElement]] = arr[j];//bucket[每个元素对应的位数的值][数量] = arr[j]
bucketElementCount[digitOfElement] ++; // 个数++
}
//按照这个桶的顺序(一个数组的下标依次取出数据,放入原来数组
int index = 0;
//把桶中的数据放到原数组中
for (int j = 0; j < bucketElementCount.length; j++) {
//如果桶中,有数据,我们采访到原数据
if (bucketElementCount[j] != 0){
for (int k = 0; k < bucketElementCount[j]; k++) {
arr[index++] = bucket[j][k];
}
}
//第1轮处理后,需要将每个bucketElementCounts[k] = 0 !!
bucketElementCount[j] = 0;
}
// System.out.println(String.format("第%d轮,对个位的排序处理arr=%s", i + 1, Arrays.toString(arr)));
}
}
}