python将两张图片对齐

目录

需要对齐的照片如下:

源码:

结果:


需要对齐的照片如下:

源码:
import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取两张图片
imgA = cv2.imread('./out/out/3.png')
imgB = cv2.imread('./out/out/4.jpg')

# 创建SIFT对象
sift = cv2.SIFT_create()

# 在两张图片中检测特征点和计算描述子
kp1, des1 = sift.detectAndCompute(imgA, None)
kp2, des2 = sift.detectAndCompute(imgB, None)

# 创建FLANN匹配器
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)

# 使用k近邻算法进行特征匹配
matches = flann.knnMatch(des1, des2, k=2)

# 根据Lowe's ratio test选择最佳匹配
good_matches = []
for m, n in matches:
    if m.distance < 0.7 * n.distance:
        good_matches.append(m)

# 获取匹配的特征点的坐标
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)

# 计算透视变换矩阵
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)

# 应用透视变换将imgA对齐到imgB
aligned_img = cv2.warpPerspective(imgA, M, (imgB.shape[1], imgB.shape[0]))
cv2.imwrite('aligned_img.jpg', aligned_img)

plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1), plt.imshow(cv2.cvtColor(aligned_img, cv2.COLOR_BGR2RGB)), plt.title('Image A with Detected Changes')
plt.subplot(1, 2, 2), plt.imshow(cv2.cvtColor(imgB, cv2.COLOR_BGR2RGB)), plt.title('Original Image B')
plt.show()
结果:

Python中,使用OpenCV库可以比较方便地实现两张图片的拼接。通常拼接图片需要考虑的主要步骤有:图像配准、图像融合以及边缘处理。以下是一个简单的图片拼接过程的介绍: 1. 导入所需的库和模块: ```python import cv2 import numpy as np ``` 2. 读取两张待拼接的图片: ```python img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') ``` 3. 图像配准: 图像配准是图像拼接中的重要步骤,通常是通过提取关键点和计算描述符来找到两张图片之间的匹配点。可以使用SIFT、SURF、ORB等特征检测算法来找到匹配点对,然后使用RANSAC等方法去除误匹配,最后通过计算变换矩阵来配准图像。例如使用ORB特征检测算法和RANSAC方法: ```python orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None) # 创建BFMatcher对象 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # 进行匹配 matches = bf.match(des1, des2) # 根据距离排序 matches = sorted(matches, key=lambda x: x.distance) # 提取好的匹配点 good_matches = matches[:10] # 提取匹配点的坐标 src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) # 计算变换矩阵 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) ``` 4. 图像变换和拼接: 使用计算得到的变换矩阵对第二张图片进行变换,使得它与第一张图片对齐,然后将变换后的图片与第一张图片拼接在一起。 ```python height, width, channels = img1.shape img2_masked = cv2.warpPerspective(img2, M, (width, height)) # 用0填充第二张图片外侧的区域 img2_masked[np.where((img2_masked==[0,0,0]).all(axis=2))] = [255,255,255] # 拼接图片 result = cv2.add(img1, img2_masked) ``` 5. 显示和保存结果: ```python cv2.imshow('拼接后的图片', result) cv2.waitKey(0) cv2.destroyAllWindows() cv2.imwrite('result.jpg', result) ``` 以上代码展示了使用OpenCV进行图像配准和拼接的一个基本流程。实际上,图像拼接可以更加复杂,可能需要考虑图像的颜色匹配、光照变化等因素,以及更复杂的图像融合技术。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值