TensorFlow禁用GPU和动态分配显存

禁用GPU

import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"   

动态分配显存

第一种方式大家应该都知道,主要是给Session用的

config = tf.ConfigProto()  
config.gpu_options.allow_growth=True  
sess = tf.Session(config=config)

但我使用的是Tensorflow的Estimator,可以采用以下方法

session_config = tf.ConfigProto(log_device_placement=True,allow_soft_placement=True)
session_config.gpu_options.per_process_gpu_memory_fraction = 0.8
session_config.gpu_options.allow_growth = True # 自适应
run_config = tf.estimator.RunConfig(
        session_config=session_config,
        model_dir=FLAGS.output_dir,
        save_checkpoints_steps=FLAGS.save_checkpoints_steps)

如果是TPU,也是一样,无非就是tf.estimator改为tf.estimator.tpu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值