Math 3527 Number Theory 1, Spring 2024 Homework 11R

Java Python Math 3527 Number Theory 1

Spring 2024

Homework 11

due Fri Apr 19th.

Psrt I: No justi cations are required for these problems. Answers will be graded on correctness.

1. Calculate the following Jacobi symbols (i) using the de nition in terms of Legendre symbols, and (ii) using quadratic reciprocity for Jacobi symbols:

(a) (51/5).

(b) (51/3).

(c) (777/433).

(d) Which method is easier to implement by hand?

2. Calculate the following Legendre symbols (i) using quadratic reciprocity for Legendre symbols by factoring the top number at each stage, and (ii) using quadratic reciprocity for Jacobi symbols:

(a) (47/15).

(b) (1423/231).

(c) (6733/1633).

(d) Which method is easier to implement by hand?

3. Do the following (make sure to give enough details to show that you actually used the requested algorithm):

(a) Use Berlekamp's root- nding algorithm to  nd the roots of the polynomial x2  = 38 (mod 109). (b) Use the Solovay-Strassen test with a = 3 to test whether m = 2773 is composite.

(c) Use the Solovay-Strassen test with a = 1149 to test whether m = 6601 is composite.  (d) Use the Solovay-Strassen test with a = 2, 3, 5 to test whether m = 1729 is composite.

Psrt II: Solve the following problems. Justify all answers with rigorous, clear explanations.

4. The goal of this problem is to classify the prime divisors of integers of the form n2 + n - 3.

(a) Let p be a prime. Prove that 13 is a square modulo p if and only if p = 2, p = 13, or p is congruent to 1, 3, 4, 9, 10, or 12 modulo 13.

(b) Prove that a prime p divides an integer of the form. q(n) = n2  + n - 3 if and only if p =  13 or p is congruent to 1, 3, 4, 9, 10, or 12 modulo 13. [Hint: What do you have to take the square root of?]

5.  The goal of this problem is to prove that there are in  nitely many primes congruent to 4 modulo 5.

dai 写Math 3527 Number Theory 1, Spring 2024 Homework 11R

(a)  Let n be a positive integer and let pbe a prime dividing 5(n!)2 — 1. Show that p > nand that (p/5)  = +1. (b)  Show that 5(n!)2  — 1 has at least one prime divisor not congruent to 1 modulo 5, and deduce that it has a prime divisor greater than n that is congruent to 4 modulo 5.

(c)  Deduce that there are in  nitely many primes congruent to 4 modulo 5.  [Hint:  If P were the largest, apply (b) to n = P.]

6.  As shown on problem 6 of homework 2, the only primes of the form ak — 1 are those numbers 2p — 1 where p is prime, but as seen in problem 4 of homework 7, not all of these numbers actually are prime. The goal of this problem is to show the non-primality of some of these values 2p — 1.

(a)  Suppose that q 三 7 (mod 8) is prime.  Show that q divides 2(q- 1)/2 — 1. [Hint: Euler's criterion.]

(b)  Suppose that p 三 3 (mod 4) is a prime such that 2p + 1 is also prime, and p > 3.  Show that 2p  — 1 is composite.

(c)  Deduce that 2p  — 1 is composite for the primes p = 11, 23, 83, 131, 179.

7.  The goal of this problem is to give several di  erent proofs of the fact that if p 三 1  (mod 4) is a prime, then the congruence x2  三 — 1 (mod p) has a solution.  In class, this was proven using primitive roots.

(a)  Show that if x = [2/p-1! then x2 三 — 1  (mod p).  [Hint:  Note that  (p — 1)! =  [1 · 2 · · · · · 2/p-1] · [(p — 2/p-) · · · (p-2)(p-1)]

(b)  Show that if p 三 1 (mod 4), then — 1 is a quadratic residue modulo p.  [Hint:  Euler's criterion.]

(c)  Suppose that a is any quadratic non-residue modulo p.  Show that x = a(p- 1)/4  has x2  三 — 1  (mod p). [Hint: Euler again   Artificial intelligence Java or Java Python C++        WX:codehelp

  • 18
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值