zcmu-2106

2106: 种树

Time Limit: 1 Sec   Memory Limit: 128 MB
Submit: 55   Solved: 18
[ Submit][ Status][ Web Board]

Description

A城市有一个巨大的圆形广场,为了绿化环境和净化空气,市政府决定沿圆形广场外圈种一圈树。园林部门 得到指令后,初步规划出n个种树的位置,顺时针编号1到n。并且每个位置都有一个美观度Ai,如果在这里种树就可以得到这Ai的美观度。但由于A城市土壤 肥力欠佳,两棵树决不能种在相邻的位置(i号位置和i+1号位置叫相邻位置。值得注意的是1号和n号也算相邻位置!)。
最终市政府给园林部门提供了m棵树苗并要求全部种上,请你帮忙设计种树方案使得美观度总和最大。如果无法将m棵树苗全部种上,给出无解信息。

Input

输入的第一行包含两个正整数n、m。
第二行n个整数Ai。

Output

输出一个整数,表示最佳植树方案可以得到的美观度。如果无解输出“Error!”,不包含引号。

Sample Input

7 31 2 3 4 5 6 7

Sample Output

15

HINT

 对于全部数据,满足1<=m<=n<=30;

其中90%的数据满足m<=n<=20

-1000<=Ai<=1000

Source

不得不说,我和dalao的技术差的不至有一个层次,先说说这道题目的思路,我先是想到用数组记录美观度,在开另外的数组记录位置,然后在一个个从最大美观度往下找位置,然而 额呃呃呃   超时,,,比赛结束  看了网上大佬的题解就是不一样

分析:

首先考虑如果没有“相邻位置不能都种”这一限制会怎么样。这时就是一个裸的贪心——按照A[i]从大到小排序,然后取前M个。

那么加上限制以后会发生什么呢?

【1   2    3    4    5】

假设A[3]最大,那我们就试图去选A[3]。选中之后首先要去掉3,并且,A[2]和A[4]也都不能选了,所以将它们删掉——

但是慢着!这可能会导致问题。假设A[3]=20,A[2]=A[4]=19,那么同时选A[2],A[4]可能比选A[3]要优!在最后的方案中可能是A[2]+A[4]而非A[3]。这种情况要怎么解决呢?

可以发现一点:由于A[3]最大,所以在最后的方案中,不可能只选A[2],A[4]中的一个。
原因很简单:假设在最优方案中选了A[2]但未选A[4],那可以简单地把A[2]换成A[3],由于未选A[4],所以这样不会产生任何矛盾,并且把A[2]换成A[3]后,总的美观度不会下降。

因此,我们先去掉2,3,4,然后加入一个新的“物品”,其权值为A[2]+A[4]-A[3],代表同时选2,4,删去3.这样,在选了3之后再选这个新物品,功效就相当于刚才所说的,把A[3]换成A[2]+A[4]。

这个新物品应该放在哪里呢?它的含义是“选2,4”,所以很容易想到,应该把它放在1,5中间。
出于方便起见,不妨在删掉2,4后直接把A[3]改成A[2]+A[4]-A[3],显然这个位置是正确的。

如此就将N个物品,需要选M个的问题转化成了在N-1个物品中选的问题。并且可以发现一个很好的性质:新的3所对应的仍然是“选中物品数+1”!(把选3换成了选2,4,即多选了一个物品)

也就是说,完全可以把新的3看做一个和1,5毫无区别的物品,现在我们只需要在1,3,5三个物品中选择M-1个!如此下去,直到选择M次,就可以得到答案。

因此描述一下算法:以A[i]为关键字建大根堆,用一个链表存放当前物品。
最初链表中元素是1~N,i的后继是i+1,前驱是i-1(当然,1的前驱是N,N的后继是1)。
执行M次操作,每一次操作都将堆顶元素k取出,ans+=A[k]。然后在链表中删除k的前驱pre和后继nxt,令A[k]=A[pre]+A[nxt]-A[k],并更新堆。

这个算法运行的很好,但你可能感觉有点虚——为什么每次选A值最大的就正确呢?
可以发现,在上面的讨论中“选3”时,我们实际上做的是声明如下事实:
在最终答案中要么选了3,要么同时选了2,4.换句话说,要么选了3,要么在此基础上选了A[2]+A[4]-A[3]。

所以我们实际上是重写了这个问题,将其变成“N-2个物品中选M-1”个的形式,如此一直化归,直到最后变成“N-2(M-1)个物品中选1个”,这时答案就是显然的。
#include<iostream>  
#include<cstdio>  
#include<cstring>  
#include<cstdlib>  
#include<set>  
#include<ctime>  
#include<vector>  
#include<queue>  
#include<algorithm>  
#include<map>  
#include<cmath>  
#define inf 1000000000  
#define pa pair<int,int>  
#define ll long long  
using namespace std;  
  
int ans;  
int n,m,cnt;  
int a[200005],pre[200005],nxt[200005];  
bool mark[200005];  
priority_queue<pa,vector<pa> >q;  
  
int read()  
{  
    int x=0,f=1;char ch=getchar();  
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}  
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}  
    return x*f;  
}  
  
void del(int x)  
{  
    mark[x]=1;  
    int l=pre[x],r=nxt[x];  
    nxt[x]=pre[x]=0;  
    nxt[l]=r;pre[r]=l;  
}  
  
void get()  
{  
    while(mark[q.top().second])  
        q.pop();  
    int x=q.top().second;  
    ans+=a[x];  
    q.pop();  
    a[x]=a[pre[x]]+a[nxt[x]]-a[x];  
    del(pre[x]);del(nxt[x]);  
    q.push(make_pair(a[x],x));  
}  
  
int main()  
{  
    n=read();m=read();  
    for(int i=1;i<=n;i++)  
        a[i]=read();  
    if(m>n/2)  
    {  
        puts("Error!");  
        return 0;  
    }  
    for(int i=1;i<=n;i++)  
    {  
        pre[i]=i-1;  
        nxt[i]=i+1;  
    }  
    pre[1]=n;  
    nxt[n]=1;  
    for(int i=1;i<=n;i++)  
        q.push(make_pair(a[i],i));  
    for(int i=1;i<=m;i++)  
        get();  
    printf("%d",ans);  
    return 0;  
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值