hdu-2067

小兔的棋盘

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 12359    Accepted Submission(s): 6184


Problem Description
小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!
 

Input
每次输入一个数n(1<=n<=35),当n等于-1时结束输入。
 

Output
对于每个输入数据输出路径数,具体格式看Sample。
 

Sample Input
 
 
1312-1
 

Sample Output
 
 
1 1 22 3 103 12 416024

解析:卡特兰数的典型应用。

代码:

#include<iostream>  
#include<cmath>  
#include<string>  
#include<string.h>  
#include<map>  
#include<stdio.h>  
#include<algorithm>  
using namespace std;  
__int64 kta[36];
int main()  
{  
     kta[0]=kta[1]=1;  
    int i,j;  
    __int64 sum=0;
    for( i=2;i<=35;i++)  
    {  
        sum=0;  
        for( j=0;j<i;j++)  
        {  
            sum+=(kta[j]*kta[i-j-1]);  
        }
        kta[i]=sum;  
    }  
    int n;  
    int flag=1;  
    while(cin>>n)  
    {
        if(n==-1)
            break;  
        printf("%d %d %I64d\n",flag,n,kta[n]*2);  
        flag++;  
    }  
    return 0;  
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值