1054 The Dominant Color (20 分)
Behind the scenes in the computer's memory, color is always talked about as a series of 24 bits of information for each pixel. In an image, the color with the largest proportional area is called the dominant color. A strictly dominant color takes more than half of the total area. Now given an image of resolution M by N (for example, 800×600), you are supposed to point out the strictly dominant color.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive numbers: M (≤800) and N (≤600) which are the resolutions of the image. Then N lines follow, each contains M digital colors in the range [0,224). It is guaranteed that the strictly dominant color exists for each input image. All the numbers in a line are separated by a space.
Output Specification:
For each test case, simply print the dominant color in a line.
Sample Input:
5 3
0 0 255 16777215 24
24 24 0 0 24
24 0 24 24 24
Sample Output:
24
#include<set>
#include<map>
#include<list>
#include<queue>
#include<deque>
#include<cmath>
#include<stack>
#include<cstdio>
#include<string>
#include<bitset>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<bits/stdc++.h>
using namespace std;
#define e exp(1)
#define p acos(-1)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define ll long long
#define ull unsigned long long
#define mem(a,b) memset(a,b,sizeof(a))
int gcd(int a,int b) {
return b?gcd(b,a%b):a;
}
int n,m;
int main()
{
map<int,int> ma;
scanf("%d%d",&n,&m);
int x,sum=n*m/2,ans=0;
for(int i=0; i<m; i++)
{
for(int j=0; j<n; j++)
{
scanf("%d",&x);
ma[x]++;
if(ma[x]>sum)
{
ans=x;
}
}
}
printf("%d\n",ans);
return 0;
}