解析elasticsearch的mapping生成Excel数据结构文档

本文介绍如何使用Python将Elasticsearch的mapping转换为Excel数据结构文档。步骤包括复制ES mapping,创建JSON文件,运行代码,并确保文件名与索引名一致。最后,通过递归方式,无论多少级的mapping都能成功转换成Excel。
摘要由CSDN通过智能技术生成

解析elasticsearch的mapping生成Excel数据结构文档

重点必看

python写的,看不懂直接运行就成。我会把如何运行也写出来。能看

如何使用

1、手动将ES的mapping复制出来,按照索引单独复制
2、每个索引创建一个索引名.json文件,然后将索引的mapping放进去
3、创建文件夹将所有的json文件放一起
4、运行代码,把文件夹目录输入进去
5、在json文件夹内找excel文件已经生成完毕

使用截图

整理完成的文件
在这里插入图片描述

执行代码并输入路径
在这里插入图片描述
生成成功(切记文件名和索引名要一致)
在这里插入图片描述
生成结果
用的递归所以无论几成都可以生成出来
在这里插入图片描述

代码

# coding=utf8

import xlwt
import os
import json
import io

print "基于Elasticsearch中索引的Mapping结构,生成excel文档"
print "需要将每个索引的mapping单独放到一个json文件中"
print "多个json文件可以放到同一文件夹内"
print "一个excel会生成文件夹内所有的json文件对应表格,会按照json文件名创建多个sheet展示"
# 输入的路径
basic_path = ''
# 路径集合
list_file = []

# 运行操作
while 1:
    try:
        basic_path = raw_input("\033[0;34;40m请输入json文件路径(不含文件名):\033[0m")
        if basic_path == '':
            continue
        else:
            list_file = [file for file in os.listdir(basic_path) if file.endswith('json')]
            if len(list_file) == 
ES(Elasticsearch)是一种开源的分布式搜索引擎,可以帮助我们高效地存储和检索大量的数据。在使用ES进行数据的索引和搜索之前,我们需要定义数据的映射(mapping)。ES mapping生成工具是用来辅助我们生成ES mapping的工具。 ES mapping定义了索引中每个字段的数据类型和分析器等信息。它可以帮助ES正确地解析和处理我们存储在索引中的数据。但是,对于有大量字段的复杂数据结构,手动编写mapping会非常繁琐且容易出错。因此,ES mapping生成工具可以根据数据的结构、类型和需求,自动生成合适的mapping。 使用ES mapping生成工具可以大大简化mapping的创建过程。我们只需要提供一些参数,如数据类型、分析器、字段的关系等,工具就会根据这些参数生成对应的mapping。这样不仅减少了手动编写mapping的工作量,还可以提高工作效率和准确性。 除了生成基本的字段映射外,ES mapping生成工具还可以根据需求添加额外的设置。例如,我们可以定义分词器、过滤器、搜索建议等功能。工具可以根据我们的需求,自动添加相应的设置,确保我们的数据能够被ES正确处理和搜索。 总之,ES mapping生成工具是用来辅助生成ES mapping的工具。它可以根据数据的结构和需求,自动生成合适的mapping,并提供额外的设置功能。使用工具可以简化mapping的创建过程,提高工作效率和准确性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值