AcWing 4622-整数拆分

链接:4622. 整数拆分 - AcWing题库

我们规定 f(x)(x≥2)表示整数 x 的除本身之外的最大因数。

例如,f(6)=3,f(25)=5,f(2)=1。

现在,给定一个整数 n,请你将其拆分为 k 份 n1,n2,…,nk(也可以不拆分,即 k=1),要求:

n1+n2+…+nk=n
对于 1≤i≤k,ni≥2 始终成立。
f(n1)+f(n2)+…+f(nk) 的值应尽可能小。
输出 f(n1)+f(n2)+…+f(nk) 的最小可能值。

输入格式
一个整数 n。

输出格式
一个整数,表示 f(n1)+f(n2)+…+f(nk) 的最小可能值。

数据范围
前 4 个测试点满足 2≤n≤30。
所有测试点满足 2≤n≤2×109。

输入样例1:
4
输出样例1:
2
输入样例2:
27
输出样例2:
3

由于质数的最大因数为1,所以只要把n拆分为最少个数的质数就行了,讲n拆分成最少个数的质数时,f(n1)+f(n2)+f(n3)+...+f(nk)的值必然最小。

因为根据哥德巴赫猜想,任何偶数都可以拆分成两个质数。

所以如果n拆分的数中存在一个合数ni使f(n1)+f(n2)+f(n3)+...+f(ni)+...+f(nk)的值最小, 该合数的最大因数是必然大于等于2的,而合数如果是偶数可以则再拆分成两个质数,是奇数可以拆成2个质数(如果n-2是质数的话,可以拆成2和n-2)或3个质数(3和把n-3成偶数后再拆分成两个质数)。

因此如果再把存在的合数拆分成数个质数,其质数的数量必然是小于等于该合数的最大因数的(只有当合数等于4时,除其本身最大质数的合数才等于2,这时拆成的质数数量同样为2.其他情况的合数最大因数必然大于等于3)。

因此把n拆分成最少个数的质数,才能使其f(n1)+f(n2)+...+f(nk)的值最小。
由于根据前文哥德巴赫猜想已知,偶数可以拆分成2个质数,奇数可以拆分成1个(其本身就是质数)或2个或3个质数,所以

代码如下:

#include<iostream>
using namespace std;
typedef long long LL;
bool CheckPrime(int x)
{
    for(LL i=2; i*i<=x; i++)
        if(x%i==0) return false;
    return true;
}
int main()
{
    int n;
    cin >> n;
    if(n%2==0 && n!=2) cout << 2 << endl; //当该数为偶数且不为2时 
    else if(n==2) cout << 1 << endl; //当该数为2时 
    else //该数是奇数时 
    {
        if(CheckPrime(n)) cout << 1 << endl; //当该数是质数时 
        else if(CheckPrime(n-2)) cout << 2 << endl; //当该数-2是质数时 
        else cout << 3 << endl; //当该数-2不是质数时,只能拆成三个质数 
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值