我们规定 f(x)(x≥2)表示整数 x 的除本身之外的最大因数。
例如,f(6)=3,f(25)=5,f(2)=1。
现在,给定一个整数 n,请你将其拆分为 k 份 n1,n2,…,nk(也可以不拆分,即 k=1),要求:
n1+n2+…+nk=n
对于 1≤i≤k,ni≥2 始终成立。
f(n1)+f(n2)+…+f(nk) 的值应尽可能小。
输出 f(n1)+f(n2)+…+f(nk) 的最小可能值。输入格式
一个整数 n。输出格式
一个整数,表示 f(n1)+f(n2)+…+f(nk) 的最小可能值。数据范围
前 4 个测试点满足 2≤n≤30。
所有测试点满足 2≤n≤2×109。输入样例1:
4
输出样例1:
2
输入样例2:
27
输出样例2:
3
由于质数的最大因数为1,所以只要把n拆分为最少个数的质数就行了,讲n拆分成最少个数的质数时,f(n1)+f(n2)+f(n3)+...+f(nk)的值必然最小。
因为根据哥德巴赫猜想,任何偶数都可以拆分成两个质数。
所以如果n拆分的数中存在一个合数ni使f(n1)+f(n2)+f(n3)+...+f(ni)+...+f(nk)的值最小, 该合数的最大因数是必然大于等于2的,而合数如果是偶数可以则再拆分成两个质数,是奇数可以拆成2个质数(如果n-2是质数的话,可以拆成2和n-2)或3个质数(3和把n-3成偶数后再拆分成两个质数)。
因此如果再把存在的合数拆分成数个质数,其质数的数量必然是小于等于该合数的最大因数的(只有当合数等于4时,除其本身最大质数的合数才等于2,这时拆成的质数数量同样为2.其他情况的合数最大因数必然大于等于3)。
因此把n拆分成最少个数的质数,才能使其f(n1)+f(n2)+...+f(nk)的值最小。
由于根据前文哥德巴赫猜想已知,偶数可以拆分成2个质数,奇数可以拆分成1个(其本身就是质数)或2个或3个质数,所以
代码如下:
#include<iostream>
using namespace std;
typedef long long LL;
bool CheckPrime(int x)
{
for(LL i=2; i*i<=x; i++)
if(x%i==0) return false;
return true;
}
int main()
{
int n;
cin >> n;
if(n%2==0 && n!=2) cout << 2 << endl; //当该数为偶数且不为2时
else if(n==2) cout << 1 << endl; //当该数为2时
else //该数是奇数时
{
if(CheckPrime(n)) cout << 1 << endl; //当该数是质数时
else if(CheckPrime(n-2)) cout << 2 << endl; //当该数-2是质数时
else cout << 3 << endl; //当该数-2不是质数时,只能拆成三个质数
}
return 0;
}