整数的拆分(哥德巴赫猜想)

首先上题:

我们规定 f(x)(x≥2)表示整数 x 的除本身之外的最大因数。

例如,f(6)=3,f(25)=5,f(2)=1。

现在,给定一个整数 n,请你将其拆分为 k 份 n1,n2,…,nk(也可以不拆分,即 k=1),要求:

n1+n2+…+nk=n
对于 1≤i≤k,ni≥2 始终成立。
f(n1)+f(n2)+…+f(nk) 的值应尽可能小。
输出 f(n1)+f(n2)+…+f(nk) 的最小可能值。

输入格式
一个整数 n。

输出格式
一个整数,表示 f(n1)+f(n2)+…+f(nk) 的最小可能值。

ps:说一下我第一次看见这道题时的想法,我想从x往前找,直到找到第一个质数i,然后再求x-i的最大因数,然后把样例过了之后,交了之后就WA,事实证明男人的第六感一点都不可靠。

简述一下哥德巴赫猜想:即任一大于2的偶数都可写成两个质数之和(关于偶数的哥德巴赫猜想);任何一个大于7的奇数都能被表示成三个奇质数的和(关于奇数的哥德巴赫猜想)

true思路(分类讨论):

if   x是质数的话,answer=1;

不然的话

x就是合数:

if x是偶数的话根据关于偶数的哥德巴赫猜想,x都可写成两个质数之和,故answer=2;

if x是奇数的话(因为357都是质数,所以此时的x都是>=9),先看看x是否能被拆成两个质数之和,由于奇数=奇数+偶数,是偶数的质数只有2,故只需判断n-2 是否为质数,是的话则answer=2,不然的话answer>2,此时根据关于奇数的哥德巴赫猜想,answer可取3故answer=3;

Code:

#include<iostream>
#include<cmath>
using namespace std;
bool prime(int x){
  
    int n=sqrt(x);
    for(int i=2;i<=n;++i){
        if(x%i==0)return false;
    }
    return true;

}

int main(){
    int n;
    cin>>n;
    if(prime(n))cout<<"1";
    else{
        if(n%2){
            if(prime(n-2))cout<<"2";
            else cout<<"3";
        }else{
            cout<<"2";
        }
    }
    return 0;
}

哥德巴赫猜想是一个著名的未完全解决的数学假设,属于数论领域。这个猜想由德国教师克里斯蒂安·哥德巴赫于1742年提出给瑞士数学家莱昂哈德·欧拉,在通信中首次提及。 **关于哥德巴赫猜想** 常见表述为两种形式: - 强哥德巴赫猜想(二重哥德巴赫猜想):任何大于等于6的偶数都可以写成两个奇素数之和。 - 弱哥德巴赫猜想(三重哥德巴赫猜想):任何大于等于9的奇数都可以写成三个奇素数之和。 弱哥德巴赫猜想已经被证明。2013年由秘鲁数学家马里奥·贺欧夫各特宣布完成最终证明,被广泛接受。然而强哥德巴赫猜想到目前为止还没有得到完整的证明,尽管对于足够大的整数已经通过计算机辅助得到了验证。 **算法方面** 为了编程验证特定范围内的哥德巴赫猜想,可以采用如下Python代码片段来检查一个大偶数是否能分解为两个素数之和: ```python def is_prime(n): """判断n是否为素数""" if n <= 1: return False for i in range(2, int(n ** 0.5) + 1): if n % i == 0: return False return True def goldbach_conjecture(even_number): """尝试找出even_number能否表示为两个素数之和""" if even_number < 4 or even_number % 2 != 0: return None primes = [] # 构建小于even_number的所有素数列表 for num in range(2, even_number): if is_prime(num): primes.append(num) results = [] # 查找满足条件的素数组合 for prime in primes: complement = even_number - prime if complement >= prime and is_prime(complement): results.append((prime, complement)) break return results[0] if len(results) > 0 else "No solution found" # 测试函数 print(goldbach_conjecture(28)) # 输出应为一对素数 (例如: (5, 23), 具体取决于实细节) ``` 这段代码定义了`is_prime()`用于检测单个数字是不是素数;以及`goldbach_conjecture()`用来寻找指定的大偶数能够如何拆分为两素数相加的形式。注意此段代码仅适用于演示目的,实际应用可能需要更高效的算法与优化措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值