使用RabbitMQ过程中,消费者对消息处理时,难免会出现异常情况,造成消息丢失。但是消息往往都是非常关键的,为保证数据的完整性,RabbitMQ有两种机制可以保证消息的可靠性。事务机制和 confirm 机制,本文用confirm机制来探讨RabbitMQ的消息高可用性。
一、情景分析
1.生产者弄丢了数据
生产者将数据发送到 RabbitMQ 的时候,可能数据就在半路给搞丢了,因为网络问题啥的,都有可能。
此时可以选择用 RabbitMQ 提供的事务功能,就是生产者发送数据之前开启 RabbitMQ 事务channel.txSelect,然后发送消息,如果消息没有成功被 RabbitMQ 接收到,那么生产者会收到异常报错,此时就可以回滚事务channel.txRollback,然后重试发送消息;如果收到了消息,那么可以提交事务channel.txCommit。
// 开启事务
channel.txSelect
try {
// 这里发送消息
} catch (Exception e) {
channel.txRollback
// 这里再次重发这条消息
}
// 提交事务
channel.txCommit
但是问题是,RabbitMQ 事务机制(同步)一搞,基本上吞吐量会下来,因为太耗性能。
所以一般来说,如果你要确保说写 RabbitMQ 的消息别丢,可以开启 confirm 模式,在生产者那里设置开启 confirm 模式之后,你每次写的消息都会分配一个唯一的 id,然后如果写入了 RabbitMQ 中,RabbitMQ 会给你回传一个 ack 消息,告诉你说这个消息 ok 了。如果 RabbitMQ 没能处理这个消息,会回调你的一个 nack 接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息 id 的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。
事务机制和 confirm 机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那儿,但是 confirm 机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息 RabbitMQ 接收了之后会异步回调你的一个接口通知你这个消息接收到了。
所以一般在生产者这块避免数据丢失,都是用 confirm 机制的。
RabbitMQ 弄丢了数据
就是 RabbitMQ 自己弄丢了数据,这个你必须开启 RabbitMQ 的持久化,就是消息写入之后会持久化到磁盘,哪怕是 RabbitMQ 自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。除非极其罕见的是,RabbitMQ 还没持久化,自己就挂了,可能导致少量数据丢失,但是这个概率较小。
设置持久化有两个步骤:
创建 queue 的时候将其设置为持久化
这样就可以保证 RabbitMQ 持久化 queue 的元数据,但是它是不会持久化 queue 里的数据的。
第二个是发送消息的时候将消息的 deliveryMode 设置为 2
就是将消息设置为持久化的,此时 RabbitMQ 就会将消息持久化到磁盘上去。
必须要同时设置这两个持久化才行,RabbitMQ 哪怕是挂了,再次重启,也会从磁盘上重启恢复 queue,恢复这个 queue 里的数据。
注意,哪怕是你给 RabbitMQ 开启了持久化机制,也有一种可能,就是这个消息写到了 RabbitMQ 中,但是还没来得及持久化到磁盘上,结果不巧,此时 RabbitMQ 挂了,就会导致内存里的一点点数据丢失。
所以,持久化可以跟生产者那边的 confirm 机制配合起来,只有消息被持久化到磁盘之后,才会通知生产者 ack 了,所以哪怕是在持久化到磁盘之前,RabbitMQ 挂了,数据丢了,生产者收不到 ack,你也是可以自己重发的。
2.消费端弄丢了数据
RabbitMQ 如果丢失了数据,主要是因为你消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,那么就尴尬了,RabbitMQ 认为你都消费了,这数据就丢了。
这个时候得用 RabbitMQ 提供的 ack 机制,简单来说,就是你必须关闭 RabbitMQ 的自动 ack,可以通过一个 api 来调用就行,然后每次你自己代码里确保处理完的时候,再在程序里 ack 一把。这样的话,如果你还没处理完,不就没有 ack 了?那 RabbitMQ 就认为你还没处理完,这个时候 RabbitMQ 会把这个消费分配给别的 consumer 去处理,消息是不会丢的。
二、Confirm机制
1、RabbitMQ属性
##rabbitmq配置
rabbitmq:
host: 47.98.135.xxx
username: admin
password: 123456
virtual-host: my_vhost
port: 5672
#开启confirm机制
publisher-confirms: true
publisher-returns: true
#手动应答模式
listener:
simple:
acknowledge-mode: manual
2、消息接收方代码处理
/*************测试RabbitMQ的使用场景*************/
/**
* @Description: 前两个消费者没有做手动处理,最后一个消费者做了手动处理,并模拟了异常情况
* @Param:
* @Date: 2020/1/13 0013
*/
/*********没有手动处理消息,下次启动时,消息会重新执行**********/
@RabbitListener(bindings = @QueueBinding(
key = "fanout-service1",
value = @Queue(value = "fanout-queue1",durable = "true"),
exchange = @Exchange(value = "fanout-exchange", type = "fanout")
))
public void fanoutService1(Channel channel, Message msg) throws Exception{
log.info("Fanout-Service1消费了:---"+new String(msg.getBody(),"UTF-8"));
}
/*********没有手动处理消息,下次启动时,消息会重新执行**********/
@RabbitListener(bindings = @QueueBinding(
key = "fanout-service2",
value = @Queue(value = "fanout-queue2", durable = "true"),
exchange = @Exchange(value = "fanout-exchange", type = "fanout")
))
public void fanoutService2(Channel channel, Message msg) throws Exception{
log.info("Fanout-Service2消费了:---"+ new String(msg.getBody(),"UTF-8"));
}
/**手动处理消息,并模拟了异常情况,异常发生时,消息会被重新放回列会并重新执行**/
@RabbitListener(bindings = @QueueBinding(
key = "fanout-service3",
value = @Queue(value = "fanout-queue3", durable = "true"),
exchange = @Exchange(value = "fanout-exchange", type = "fanout")
))
public void fanoutService3(Channel channel, Message msg) throws Exception{
try {
Random random = new Random();
//以一定的概率模拟异常的出现
int a = random.nextInt(10);
if(a>4){
int b = a/0;
}else{
int b =a;
}
//异常没有出现时,手动确定消息已经被正常消费了,列队中删除消息
log.info("Fanout-Service3开始消费信息......."+new String(msg.getBody(), "UTF-8"));
channel.basicAck(msg.getMessageProperties().getDeliveryTag(), false);
}catch (Exception e){
log.error("Fanout-Service3信息消费失败,重新把消息放回队列"+new String(msg.getBody(), "UTF-8"));
// 处理消息失败,将消息重新放回队列
channel.basicNack(msg.getMessageProperties().getDeliveryTag(), false,true);
}
}
3、测试和结论分析
结论:这篇文章内容看起来很简单,但是不明白到有些眉目整整用了一天的时间QAQ…
手动应答的思想提炼出来就是:1、把数据持久化,就是消息会存储到本地硬盘还是其他地方云云… 2、使用try catch模块包裹内容,并对异常处理。成功 channel.basicAck 确认处理信息,失败 channel.basicNack把消息重新放回队列,再次处理
4、basicAck、basicNack解释
/********源码*******
* Acknowledge one or several received
* messages. Supply the deliveryTag from the {@link com.rabbitmq.client.AMQP.Basic.GetOk}
* or {@link com.rabbitmq.client.AMQP.Basic.Deliver} method
* containing the received message being acknowledged.
* @see com.rabbitmq.client.AMQP.Basic.Ack
* @param deliveryTag the tag from the received {@link com.rabbitmq.client.AMQP.Basic.GetOk} or {@link com.rabbitmq.client.AMQP.Basic.Deliver}
* @param multiple true to acknowledge all messages up to and
* including the supplied delivery tag; false to acknowledge just
* the supplied delivery tag.
* @throws java.io.IOException if an error is encountered
********个人理解********
basicAck这个方法是确认收到消息的意思,确认后,消息将会从消息队列中删除。
@param deliveryTag: 此条消息的唯一ID的意思
@param multiple:true 确认收到之前的几条消息 false 确认收到当前的一条消息
*/
void basicAck(long deliveryTag, boolean multiple) throws IOException;
/**********源码*********
* Reject one or several received messages.
*
* Supply the <code>deliveryTag</code> from the {@link com.rabbitmq.client.AMQP.Basic.GetOk}
* or {@link com.rabbitmq.client.AMQP.Basic.GetOk} method containing the message to be rejected.
* @see com.rabbitmq.client.AMQP.Basic.Nack
* @param deliveryTag the tag from the received {@link com.rabbitmq.client.AMQP.Basic.GetOk} or {@link com.rabbitmq.client.AMQP.Basic.Deliver}
* @param multiple true to reject all messages up to and including
* the supplied delivery tag; false to reject just the supplied
* delivery tag.
* @param requeue true if the rejected message(s) should be requeued rather
* than discarded/dead-lettered
* @throws java.io.IOException if an error is encountered
********个人理解********
basicNack:拒绝一条或几条消息,拒绝后的消息会重新返回消息队列
@param deliveryTag: 此条消息的唯一ID的意思
@param multiple:true 拒绝收到之前的所有消息,包括当前传递的这条 false 拒绝收到当前的一条消息
@param requeue: true 拒绝后,消息会重新放回队列 false:拒绝后,消息直接废弃
*/
void basicNack(long deliveryTag, boolean multiple, boolean requeue)
throws IOException;