poj3254 Corn Fieldsdp 状态压缩

一,题意:

给定一个N*M的矩阵,矩阵每个格子中只可能有两个数字0,1,1表示该土地肥沃可以种草放牛。

0表示该土地不肥沃不可以种草放牛。且牛不能放在相邻的位置,问有多少种放牛的方法。

二,解析:

该题主要应用了图的位压缩成数的思想与递推的思想,即压缩dp。

三,代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;
const int mod=100000000;
int N,M;
int graph[15];
int total[1<<13],Size;
int dp[15][1<<13];
long long sum=0;

void Search()
{//记录下哪些数字合法
    Size=0;
    for(int i=0; i<(1<<M); i++)
    {
        if(!(i&(i<<1)))//二进制1不相邻
            total[Size++]=i;
    }
}

int main()
{
    while(scanf("%d%d",&N,&M)!=EOF)
    {
        int key;
        memset(graph,0,sizeof(graph));
        for(int i=0; i<N; i++)
        {
            for(int j=0; j<M; j++)
            {
                 scanf("%d",&key);
                 if(!key)//将矩阵每一行压缩成一个数,为了好计算我们将其取反
                     graph[i]=graph[i]|(1<<j);
            }
        }
        Search();
        memset(dp,0,sizeof(dp));
        for(int i=0;i<Size;i++)
        {//初始化的0行
            if(!(total[i]&graph[0]))
                dp[0][total[i]]=1;
        }
        for(int i=1;i<N;i++)
        {//行循环
            for(int j=0;j<Size;j++)
            {//该行可能合法的数字
                if(total[j]&graph[i])
                    continue;//与原图不匹配
                for(int k=0;k<Size;k++)
                {//向上一行匹配
                    if(dp[i-1][total[k]]&&(!(total[j]&total[k])))
                       dp[i][total[j]]=(dp[i][total[j]]+dp[i-1][total[k]])%mod;
                }
            }
        }
        sum=0;
        for(int i=0;i<Size;i++)
        {//最后一行求和
            if(dp[N-1][total[i]])
                sum=(sum+dp[N-1][total[i]])%mod;
        }
        cout<<sum<<endl;
    }
    return 0;
}




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值