环形链表
给定一个链表,判断链表中是否有环。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。
思路1
初始位置都放在头节点的地方,然后快慢指针一起走,快指针一次走两步(需要注意边界条件),慢指针一次走一步,如果快指针走到nullptr,该链表就不带环;如果快慢指针相遇,该链表就带环。
代码实现
bool hasCycle(ListNode *head) {
ListNode *fast = head;
ListNode *slow = head;
do{
if(fast == NULL || fast->next == NULL){
return false;
}
else{
slow = slow->next;
fast = fast->next->next;
}
}while(fast != slow);
return true;
}
环形链表II
给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。
说明:不允许修改给定的链表。
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:tail connects to node index 1
解释:链表中有一个环,其尾部连接到第二个节点。
思路1
使用unordered_set,来保存每一个链表中元素,在保存前先查看set中是否已经存在,若存在说明是环的入口地址,返回该节点即可,否则加入到set里
代码实现
ListNode *detectCycle(ListNode *head) {
unordered_set<ListNode *> q;
ListNode *cur = head;
while(cur){
if(q.find(cur) == q.end()){//set中未找到该元素则加入
q.insert(cur);
cur = cur->next;
}
else{//找到说明是环入口地址
return cur;
}
}
return NULL;
}
思路2
使用快慢指针,快指针每次移动2步,当有环相遇时,说明快指针走过的路程是慢指针的两倍,假设链表头结点到环入口位置距离为a,环的入口与相遇节点位置距离为b,环的长度为C,我们计算快慢指针所走过的距离:
d(fast) = a + b + C
d(slow) = a + b
快指针的速度是慢指针的两倍,相同时间,快指针所走过的路程应该是慢指针所走过路程的两倍,于是:
d(fast) = 2 * d(slow)
所以有:a = C - b
因此在第一次相遇后,将快指针重新从开始,每次一步,下次快慢指针再相遇就是环入口处,对于链表头尾相连情况也是适用的。
代码实现
ListNode *detectCycle(ListNode *head){
ListNode *fast = head;
ListNode *slow = head;
while(fast != NULL && fast->next != NULL){//找到是否有环
fast = fast->next->next;
slow = slow->next;
if(fast == slow) //有环,找到环入口
{
fast = head; //重新从开始找,每次一步,再相遇就是入口
while(fast != slow){
fast = fast->next;
slow = slow->next;
}
return fast;
}
}
return NULL;
}