Ensenble集成算法-Bagging,boosting,随机森林

概述

集成学习是指将若干弱分类器组合之后产生一个强分类器。

每个弱分类器的训练样本、特征选择和权重都不一样,最终结果由弱分类器的结果投票产生。

由于各个弱分类器之间具有差异性,因此集成算法可解决过拟合问题。同时还能减少偏差和方差,提高分类结果。

自助聚合算法Bagging

采用有放回的方式随机抽取部分样本训练弱分类器,重复K次。得到K个弱分类器。等权重投票。

随机森林RF

思想与随机森林类似,只是除了样本随机,特征也是随机的,每个分类器仅采用部分特征训练。

之所以叫森林,是因为每个弱分类器都是一棵决策树。合起来就是森林了。

正向激励算法boosting

boosting与上面不太一样,它的弱分类器不能并行训练,因为下一个分类器依赖上一个的分类结果。

训练时着重关注训练集中那些不容易区分的样本。

AdaBoost是一种常见的boosting算法。具体来说,算法会为每个训练样本赋予一个权值。每次用训练完的新分类器标注各个样本,若某个样本点已被分类正确,则将其权值降低;若样本点未被正确分类,则提高其权值。权值越高的样本在下一次训练中所占的比重越大,也就是说越难区分的样本在训练过程中会变得越来越重要。
整个迭代过程直到错误率足够小或达到一定次数为止。

上述过程说的是训练过程,上述训练过程会生成一个强分类器。但是这样的强分类器还是不能满足要求,检测时,adaboosting需要多个强分类器,然后以决策树的形式级联起来。

image

级联强分类器的策略是,将若干个强分类器由简单到复杂排列,希望经过训练使每个强分类器都有较高检测率,而误识率可以放低,比如几乎99%的人脸可以通过,但50%的非人脸也可以通过,这样如果有20个强分类器级联,那么他们的总识别率为0.99^20 98%,错误接受率也仅为0.5^20 0.0001%。这样的效果就可以满足现实的需要了。

AdaBoost训练出来的强分类器一般具有较小的误识率,但检测率并不很高,一般情况下,高检测率会导致高误识率,这是强分类阈值的划分导致的,要提高强分类器的检测率既要降低阈值,要降低强分类器的误识率就要提高阈值,这是个矛盾的事情。(个人补充:每个检测器不通过的误识率低就行,最终的准确度由多个检测器的级联来保证)

最后两段来自《浅析人脸检测之Haar分类器方法》。

比较

这一小节来自《Bagging-Adaboost-RF的粗糙理解》

过拟合问题

  1)Bagging:不存在过拟合:因为它每个分类器都是独立的,训练数据不一样(行抽样)

  2)Adaboost:存在过拟合:因为它总是关注分错了的样本

  3) RF:不存在过拟合:因为每个分类器都是独立的,不但训练数据不同(行抽样),而且特征也不一样(列抽样,类似于领域专家)

性能比较

  1)Adaboost比Bagging准确率高,但存在过拟合

  2)RF准确率和Adaboost差不多,但更具鲁棒性,不存在过拟合,对F值敏感【通常取log2d+1,一般F=1的效果很好】

一些类比

这些都是我胡诌的。

随机森林的思想和深度学习力为了避免过拟合所做的dropout很像。都是使用部分特征训练,然后最终合并投票产生结果。

boosting和训练中把分错数据加入训练集的做法很像,都是提高了易分错数据的权重,让模型跟多的拟合这些数据的情况。

参考资料

boosting和bagging算法学习

随机森林原理介绍与适用情况(综述篇)

Bagging-Adaboost-RF的粗糙理解

浅析人脸检测之Haar分类器方法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值