菲氏微积分与Keisler微积分:两个不同时代的微积分教材

519 篇文章 7 订阅

    ​    ​当前,全国正在向世界科技强国迅速迈进,高校微积分教育亟待改革,不拖后退。

    ​    ​菲氏微积分与Keisler微积分教材不仅是两个不同时代的微积分教材,而且两者的版权形式也不相同:一个是版权所有(纸质版),一个是版权共享(电子版)。

    ​    ​毋庸置疑,当前国内高校微积分教育(师资队伍与教学大纲)基本上属于传统菲氏微积分的范畴(总根子),而KLeisler撰写的无穷小微积分(基于模型论)几乎没有对我国高校微积分教育产生实质性的影响。

​    ​    ​菲氏诞生于十九世纪末期,经历了十月革命、卫国战争动乱年代。这一时期,苏联国内学术界强烈反对“数学形式主义”,拒绝公理化集合论,这些倾向在菲氏著作中都有所反映。

    ​    ​实际上,由于苏联学术界偏离当时国际发展主流,导致二十几下半叶,俄罗斯在数学方面的落伍,缺乏新人与创新。

    ​    ​反观国际数学界,十九世纪80年代,德国康托尔创立集合论、2001年,英国罗素发现康托尔朴素集合论存在悖论,为解决数学基础存在悖论问题,导致国际数学系统公理化运动的兴起。另外,2000年,德国数学家希尔伯特提出著名的23个数学问题,要求世界数学家解决,其中摆在第一位置的问题就是“康托尔连续统假设”(即自然数与实数是不是一样多?康托尔猜然数集合少于实数集合,而且中间没有其他的数集)。

    ​    ​事实证明,康托尔假设不是传统数学所能解决的问题,非常深奥。上世纪50年代,美国数学家塔尔斯基主持世界知名的数学讨论班,创立了名声远扬的数理逻辑模型论,其博士·1生Keisler在模型论基础上于1967年创立判定数学理论复杂性的概念,据此概念,40年之后,在本世纪二十年代(2017年),两位美国数学家给出长篇证明(600页),彻底推翻了康托尔的猜想(CH),荣获豪斯多夫大奖。

    ​    ​1960年,美国数学家鲁宾逊,根据,绪论模型论紧致性定理,创建现代无穷小分析。这是现代数学的一大进展。

    ​    ​197/6年,J.Keisler精心撰写“ElementaryCalculus”(基础微积分)教材,完全根据鲁宾逊关于现代无穷小的理论,构建了全新的微积分教育新途径,并于2001年,按照“知识共享”协议将其放开该书版权,上传互联网,任由读者下载学习使用。

    ​    ​对待数学公理化,菲氏与Keisler的态度截然相反,一个唯恐避之不及,另一个欣然拥抱。

我们怎么样?

    ​    ​如果按照菲氏传统路线走下去,在二十年之后,我们的数学家何在?赶超世界变成一句空话。

袁萌   7月2日

附:

菲氏简介及其代表作:

菲赫金哥尔茨(1888 – 1959)毕生致力于数学教学,热爱教学、重视教学。他在列宁格勒大学(现圣彼得堡大学)工作40多年,直至1953年退休,一直是数学分析教研室负责人。他在大学讲了30多年的数学分析课,培养了许多世界著名的苏联数学家。他还热心于苏联的中学数学教学,给中学生和中学教师讲课,他是20世纪30年代苏联中学教学大纲的制订者,苏联第一届数学奥林匹克的发起人(1934年),也是苏联师范学院的组织者之一。三卷本《微积分学教程》是他的教学经验和教学艺术的结晶。人们赞扬‘他的每一堂课都是一篇教学杰作,甚至他的板书也像是一幅艺术作品”,对他的评价是“天才加诚挚、善良,具有非凡的工作能力和高度的责任感”。 

菲氏微积分内容简介

《微积分学教程》是2006年1月高等教育出版社出版的图书,作者是(俄罗斯)菲赫金哥尔茨。

书    名  微积分学教程

作    者 俄罗斯  菲赫金哥尔茨

译    者 杨弢亮、叶彦谦

出版社 高等教育出版社

出版时间 2006-01-01

目  录

绪论 实数

  1.有理数域

  2.无理数的导入·实数域的序

  3.实数的算术运算

  4.实数的其他性质及应用

  第一章 极限论

  1.整序变量及其极限

  2.极限的定理·若干容易求得的极限

  3.单调整序变量

  4.收敛原理·部分极限

  第二章 一元函数

  1.函数概念

  2.函数的极限

  3.无穷小及无穷大的分阶

  4.函数的连续性及间断

  5.连续函数的性质

  第三章 导数及微分

  1.导数及其求法

  2.微分

  3.微分学的基本定理

  4.高阶导数及高阶微分

  5.泰勒公式

  6.插值法

  第四章 利用导数研究函数

  1.函数的动态的研究

  2.凸与(凹)函数

  3.函数的作图

  4.不定式的定值法

  5.方程的近似解

  第五章 多元函数

  1.基本概念

  2.连续函数

  3.多元函数的导数及微分

  4.高阶导数及高阶微分

  5.极值·最大值及最小值

  第六章 函数行列式及其应用

  1.函数行列的性质

  2.隐函数

  3.隐函数理论的一些应用

  4.换元法

  第七章 微分学在几何上的应用

  1.曲线及曲面的解析表示法

  2.切线及切面

  3.曲线的相切

  4.平面曲线的长

  5.平面曲线的曲率

  附录 函数扩充的问题

第八章 原函数(不定积分)

1.不定积分与它的计算的最简单方法

2.有理式的积分

3.某些含有根式的积分

4.含有三角函数与指数函数的表达式的积分

5.椭圆积分

第九章 定积分

1.定积分的定义与存在条件

2.定积分的一些性质

3.定积分的计算与变换

4.定积分的一些应用

5.积分的近似计算

第十章 积分学在几何学、力学与物理学中的应用

1.弧长

2.面积与体积

3.力学与物理学的数量的计算

4.最简单的微分方程

第十一章 常数项无穷级数

1.引言

2.正项级数的收敛性

3.任意项级数的收敛性

4.收敛级数的性质

5.累级数与二重级数

6.无穷乘积

7.初等函数的展开

8.借助于级数作近似计算

9.发散级数的求和法

第十二章 函数序列与函数级数

1.一致收敛性

2.级数和的函数性质

3.应用

4.关于幂级数的补充知识

5.复变量的初等函数

6.包络级数与渐近级数  欧拉-麦克劳林公式

第十三章 反常积分

第十四章 依赖于参数的积分

第十五章 曲线积分,斯蒂尔切斯积分

第十六章 二重积分

第十七章 曲面面积,曲面积分

第十八章 三重积分及多重积分

第十九章 傅里叶级数

第二十章 傅里叶级数(续)

附录 极限的一般观点

(全文完)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值