抽象拓扑学(Topology)有何用处?

     初看上去,拓扑学研究的对象全是抽象集合以及集合的集合,连数字都不要了,没有什么数学的味道儿。这种”学问“能有什么用处呢?

         201110月,AhmedA. Ghneim发表一份研究报告(电子版,PDF文件,共计69页),题为”关于非标准拓扑的综述“(On Nonstandard Topology),内容相当全面,引用参考文献多达26篇,有一定的参考价值。

         几千年的人类文明以及平日的生活实践,给我们形成了一种”邻域(Neighbourhood)的直觉观念。但是,什么是”邻域“,很抽象,往往说不清楚。从物理学来看,纳米显微镜,哈勃望远镜都需要使用”邻域“的精确概念。进入数学研究领域,几乎处处离不开”邻域“的概念。函数的连续性、可导性以及微分与积分,等等,都离不开”邻域“概念。在没有度量的环境中,何谓”邻域“?谁能够说的清楚?

         假定X为任意集合,其上的拓扑(Topology)由满足”开集公理”的开集组成。点x的”邻域“是指集合X中包含点x的任意子集,且此子集里面含有一个拓朴元素开集遮盖住点x。如果该”邻域“本身就是拓扑中的开集,那么,该邻域就称为点x的“开邻域”。有了“邻域”的概念,我们说话也就方便了。比如,在函数f有定义的“邻域”内,函数的连续性、可导性,等等,都好说了。可以说,拓扑学就是关于“邻域”的(抽象)数学分支。

         在一个集合X中,点分布均匀,稠密的概念容易理解。但是,“紧致性”(Compactness)就往往不知所云了。一间小屋子挤满了人,一定感到很“紧”。在集合X上引入拓扑,问题就好说了。

我们引入一个定义如下:

       “A space X is compact(紧致的)if for each collection of open sets Oα in X whose union(并集合)is X , there exist a finite number of these Oα ’s whose union is X”,意思是说,“紧致集合X,对于X的任意开覆盖必有有限覆盖存在。”这就是紧致性的本质,紧致性就是某种有限性。比如,闭区间[a,b]是紧致的,而半开区间[a,b)就不是紧致集合(需要动动脑筋)。

          由此,我们容易想象,定义在紧致集合X上的连续函数f必有极值,至此,我们把复旦大学编写的《数学分析》相关定理的结论推广了。要保证考研成功就必须站得高一点,不要沾沾自喜于题海战术的成绩。多年前,华罗庚在给我们讲课时,曾告诫我们:数学书要越读越薄,要彻底吃透其中的基本概念与基本理论。至今,我读数学书喜欢一句一句的读,有时还需要闭起眼睛想一想,不能一目十行地浏览一下了事。

          说明:现代拓扑学具有许多分支,以上只是”点集拓扑学“的基础知识。非标准拓扑学是一门新学问,这里没有涉及。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值