1. 点乘
点乘(Dot Product) 的结果是 点积,又称数量积 或 标量积(Scalar Product)。
假设空间中有两个向量: a ⃗ = ( x 1 , y 1 , z 1 ) , b ⃗ = ( x 2 , y 2 , z 2 ) , a ⃗ \vec{a}=\left(x_{1}, y_{1}, z_{1}\right) , \vec{b}=\left(x_{2}, y_{2}, z_{2}\right) , \vec{a} a=(x1,y1,z1),b=(x2,y2,z2),a 与 b ⃗ \vec{b} b 之间夹角为 θ \theta θ 。
从代数角度看,点积是对两个向量对应位置上的值相乘再相加的操作,其结果即为点积。
a
⃗
⋅
b
⃗
=
x
1
x
2
+
y
1
y
2
+
z
1
z
2
\vec{a} \cdot \vec{b}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
a⋅b=x1x2+y1y2+z1z2
从几何角度看,点积是两个向量的长度与它们夹角余弦的积。
a
⃗
⋅
b
⃗
=
∣
a
⃗
∣
∣
b
⃗
∣
cos
θ
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
a⋅b=∣a∣∣b∣cosθ
几何意义
点乘的结果表示 a ⃗ \vec{a} a 在 b ⃗ \vec{b} b 方向上的投影与 ∣ b ⃗ ∣ |\vec{b}| ∣b∣ 的乘积,反映了两个向量的相似度,结果越大越相似。基于结果可以判断这两个向量是否是同一方向,是否正交垂直,具体对应关系为:
- a ⃗ ⋅ b ⃗ > 0 \vec{a} \cdot \vec{b}>0 a⋅b>0 则方向基本相同,夹角在 0 ∘ 0^{\circ} 0∘ 到 9 0 ∘ 90^{\circ} 90∘ 之间
- a ⃗ ⋅ b ⃗ = 0 \vec{a} \cdot \vec{b}=0 a⋅b=0 则正交,相互垂直
- a ⃗ ⋅ b ⃗ < 0 \vec{a} \cdot \vec{b}<0 a⋅b<0 则方向基本相反,夹角在 9 0 ∘ 90^{\circ} 90∘ 到 18 0 ∘ 180^{\circ} 180∘ 之间
点乘代数定义推导几何定义: (常用来求向量夹角)
设
a
⃗
\vec{a}
a 终点为
A
(
x
1
,
y
1
,
z
1
)
,
b
⃗
A\left(x_{1}, y_{1}, z_{1}\right) , \vec{b}
A(x1,y1,z1),b 的终点为
B
(
x
2
,
y
2
,
z
2
)
B\left(x_{2}, y_{2}, z_{2}\right)
B(x2,y2,z2),原点为
O
O
O ,则
A
B
→
=
(
x
2
−
x
1
,
y
2
−
y
1
,
z
2
−
z
1
)
\overrightarrow{A B}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)
AB=(x2−x1,y2−y1,z2−z1)
在
△
O
A
B
\triangle O A B
△OAB 中,由余弦定理得:
∣
A
B
→
∣
2
=
∣
a
⃗
∣
2
+
∣
b
⃗
∣
2
−
2
∣
a
⃗
∣
∣
b
⃗
∣
cos
θ
|\overrightarrow{A B}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \theta
∣AB∣2=∣a∣2+∣b∣2−2∣a∣∣b∣cosθ
使用距离公式进行处理,可得:
∣
a
⃗
∣
∣
b
⃗
∣
cos
θ
=
x
1
2
+
y
1
2
+
z
1
2
+
x
2
2
+
y
2
2
+
z
2
2
−
[
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
+
(
z
2
−
z
1
)
2
]
2
|\vec{a}||\vec{b}| \cos \theta=\frac{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+x_{2}^{2}+y_{2}^{2}+z_{2}^{2}-\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]}{2}
∣a∣∣b∣cosθ=2x12+y12+z12+x22+y22+z22−[(x2−x1)2+(y2−y1)2+(z2−z1)2]
去括号后合并,可得:
∣
a
⃗
∣
∣
b
⃗
∣
cos
θ
=
x
1
x
2
+
y
1
y
2
+
z
1
z
2
=
a
⃗
⋅
b
⃗
|\vec{a}||\vec{b}| \cos \theta=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}=\vec{a} \cdot \vec{b}
∣a∣∣b∣cosθ=x1x2+y1y2+z1z2=a⋅b
根据上面的工式可计算
a
⃗
\vec{a}
a 与
b
⃗
\vec{b}
b 之间的夹角:
θ
=
arccos
(
a
⃗
⋅
b
⃗
∣
a
⃗
∣
∣
b
⃗
∣
)
\quad \theta=\arccos \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)
θ=arccos(∣a∣∣b∣a⋅b)
2. 叉乘
叉乘(Cross Product) 又称 向量积(Vector Product)。
在空间中有两个向量: a ⃗ = ( x 1 , y 1 , z 1 ) , b ⃗ = ( x 2 , y 2 , z 2 ) , a ⃗ \vec{a}=\left(x_{1}, y_{1}, z_{1}\right) , \vec{b}=\left(x_{2}, y_{2}, z_{2}\right) , \vec{a} a=(x1,y1,z1),b=(x2,y2,z2),a 与 b ⃗ \vec{b} b 之间夹角为 θ \theta θ 。
从代数角度计算:
a
⃗
×
b
⃗
=
(
y
1
z
2
−
z
1
y
2
,
z
1
x
2
−
x
1
z
2
,
x
1
y
2
−
y
1
x
2
)
\vec{a} \times \vec{b}=\left(y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-y_{1} x_{2}\right)
a×b=(y1z2−z1y2,z1x2−x1z2,x1y2−y1x2)
从几何角度计算: (
n
⃗
\vec{n}
n 为
a
⃗
\vec{a}
a 与
b
⃗
\vec{b}
b 所构成平面的单位向量)
a
⃗
×
b
⃗
=
∣
a
⃗
∣
∣
b
⃗
∣
sin
θ
n
⃗
\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \vec{n}
a×b=∣a∣∣b∣sinθn
其运算结果是一个向量,并且与这两个向量都垂直,是这两个向量所在平面的法线向量。使用右手定则确定其方向。
几何意义
如果以向量 a ⃗ \vec{a} a 和 b ⃗ \vec{b} b 为边构成一个平行四边形,那么这两个向量外积的模长与这个平行四边形的面积相等。
参考文章
[1] https://zhuanlan.zhihu.com/p/359975221 (向量点乘与叉乘的概念及几何意义)