机器学习
阿袁的小园子
这个作者很懒,什么都没留下…
展开
-
pytesseract使用
pytesseract包的使用主要是环境配置会有点麻烦,以下是对我比较有用的几篇博客:1.https://www.cnblogs.com/tomyyyyy/p/11135191.html2.https://blog.csdn.net/u013401853/article/details/789982063.https://www.cnblogs.com/vhills/p/8413915.ht...原创 2020-02-08 19:09:16 · 726 阅读 · 0 评论 -
在kaggle中上传自己的数据集
1.点击导航栏的datasets2.点击“new datasets”3.上传文件4.最后就是等待文件上传成功,点击右下角的“create”键即可原创 2020-01-27 22:26:21 · 17151 阅读 · 16 评论 -
pandas操作集合
1.shift():把整列数据右移一列(axis=1)或者整个数据表下移一行(参数为axis=0),默认是axis = 02.drop_duplicates(),去除重复项,它有3个参数,其中subset用来指定特定的列,默认是所有列,详细的解释在这3.cumsum():连续和,详细见下面的例子和官方文档:>>> s = pd.Series([2, np.nan, 5, -...原创 2020-03-02 21:57:38 · 1768 阅读 · 0 评论 -
tensorflow使用
本博客会长期更新1.首先是tensorflow的安装,这篇文章对我的帮助比较大。简单来说,就是:安装python+安装anaconda+创建虚拟环境+在虚拟环境中安装tensorflow四大步2.查看python解释器的路径:在anaconda的prompt中输入指令:python -c "from distutils.sysconfig import get_python_lib; pri...原创 2020-01-12 02:15:06 · 168 阅读 · 0 评论 -
吴恩达ML课程笔记(Chapter 18:OCR)
18-1 问题描述与OCR pipeline1.OCR工作流程:文本检测,字符分割,字符分类18-2 滑动窗口1.我们用滑动窗口来检测文本+分割字符,用监督算法来进行字符分类18-3 获取大量数据和人工数据1.获取人工数据:对自然数据进行等分、缩放或者旋转2.比如说,人工拉伸:3.再比如语音样本,我们可以在获取了一个干净的语音样本的基础上,通过人为添加噪音来获得更多的样本4.人...原创 2020-01-08 12:22:00 · 142 阅读 · 0 评论 -
吴恩达ML课程笔记(Chapter 17)
17-2 随机梯度下降原创 2020-01-08 11:25:29 · 129 阅读 · 0 评论 -
吴恩达ML课程笔记(Chapter 16)
文章目录16-1 问题规划16-2 基于内容的推荐算法16-1 问题规划1.几个说明:n.u=the number of usersn.m = the number of moviesr(i,j)=1 if user j has rated movie iy(i,j)=rating given by user j to movie i16-2 基于内容的推荐算法...原创 2020-01-07 16:57:03 · 217 阅读 · 0 评论 -
吴恩达ML课程笔记(Chapter 15:异常检测anomaly detection)
文章目录15 异常检测(anomaly detection)15-1 问题动机15-2 高斯分布15 异常检测(anomaly detection)15-1 问题动机1.比如给定一个数据集,这个数据集里的样本都是正常的,现在有一个新的样本点,我们需要判断这个样本点是不是正常的,这时候我们就需要对数据进行建模,得到模型P(X),并设定一个值ε,如果P(xtest)<ε,那这个新样本点就是...原创 2020-01-06 17:52:35 · 214 阅读 · 0 评论 -
吴恩达ML课程笔记(Chapter 14:降维dimensionality reduction)
文章目录14-1 目标I:数据压缩14-3 主成分分析问题规划I14-4 主成分分析问题规划II14-5 主成分数量选择14-7 压缩重现14-1 目标I:数据压缩1.另一种无监督学习方法:数据降维2.数据降维的实例:拿这个例子来说,我们有两个特征x1,x2,然后我们找到这两个特征之间的关系曲线(就是图中的绿线),然后我们得到第三个特征z1,我们只需要获得各个样本点在z1上的位置,就可以...原创 2020-01-06 17:26:21 · 181 阅读 · 0 评论 -
吴恩达ML课程笔记(第4周)
上标层数,下标特征编号The output nodes will not include the bias nodes while the inputs will.原创 2019-07-21 21:08:31 · 179 阅读 · 0 评论 -
吴恩达ML课程笔记(第3周)
1.逻辑回归分类模型的代价函数:2.简化后的写法为:原创 2019-07-14 15:28:24 · 150 阅读 · 0 评论 -
吴恩达ML课程笔记(第2周)
1.关键图:原创 2019-05-24 00:20:51 · 164 阅读 · 0 评论 -
吴恩达ML课程笔记(第5周)
1.逻辑回归与神经网络算法的代价函数:原创 2019-09-10 20:35:27 · 270 阅读 · 0 评论 -
吴恩达ML课程笔记(Chapter13)
13-2 k-means算法1.聚类算法:把无标记(non-label)的数据分成一簇一簇的算法2.k-means算法:我的另一篇博客3.k-means算法也可以分类那些数据比较集中的数据集,比如像这样:4.这里需要注意一点,大写K用来表示聚类/簇的数量,小写k用来表示1~K区间里的某一个数13-3 优化目标1.优化目标:ci:第i个点被分类到的聚类的索引J(c(1),c(2)...原创 2020-01-04 11:41:38 · 131 阅读 · 0 评论 -
K-means算法
参考资料:K-means算法文章目录一、步骤二、算法一、步骤K-means算法是一种迭代算法,它的工作是簇分类+移动聚类中心每次内循环的第一步是簇分类内循环的第二步是移动聚类中心具体过程如下:step1:随机生成两点,也就是图上的这两个×,我们把它称为聚类中心选取两个点的原因是我想把数据分成两类step2:簇分类遍历每个绿点,看它里红叉更近还是离蓝叉更近,离哪个更近就把绿点...原创 2020-01-04 11:16:31 · 475 阅读 · 0 评论