Can all flash games be readily ported to adobe air for deployment on ios

Can all flash games be readily ported to adobe air for deployment on ios? For example, if I develop a 2D platform game in AS3, can I simply re-package that for deployment on iOS using Adobe AIR, without needing to modify the codebase?

If possible, how do I do that? Just re-package using the AIR SDK's ADT tool?

In my game, I use the mouse and keyboard to control the character... the hero follows the mouse cursor and left click fires... how will that translate to touch?

I'm new to AIR and haven't even got an iPhone yet. But I'm interested to know the possibilities.

Any help/tips/advice would be greatly appreciated.

Any Flash content can be packaged with AIR to iOS, Android, and BlackBerry.

From Flash Professional, this can be done by changing the Publish Settings:

publish-settings

Targeting AIR 3.3 is optimal, with higher performance for iOS. This AIR SDK can be overlaid to Flash Professional publish settings; or, you can use the ADT command line packager.

Download AIR 3.0 SDK.
Assure JRE, or use the one from Flash Builder.
Execute adt to package your SWF to an IPA:

adt -package -target [ipa-test | ipa-debug | ipa-app-store | ipa-ad-hoc]
    -keystore iosPrivateKey.p12 -storetype pkcs12 -storepass qwerty12
    -provisioning-profile ios.mobileprovision
    HelloWorld.ipa
    HelloWorld-app.xml
    HelloWorld.swf icons Default.png

It's important to note that all executable code must reside in a single SWF to run on the iOS platform. SWFLoading or any dynamically loaded SWF that executes code is not supported. So, link all your Flash to a single SWF.

Performance is also a factor - heavy animation and vector graphics on enter frame will require optimization for mobile platforms.

Per design, there are many aspects to consider.

Apps run full screen with different resolutions per device. You can leverage elegant systems of dynamically resizing to adapt to these multiple screens or target a specific resolution per app.

If your existing Flash project is not a compatible aspect ratio, you will need to update your layout.

Mouse translates decently to touch, but there are subtle nuances that are not intuitive. For example, hover is generally poor to implement in touch. As well, the mouse cursor does not obstruct the view like holding your hand over the game play area for touch.

Mobile touch devices increase capability of interaction with multi-touch and gestures which may be leveraged.

On-screen keyboard may be activated; however, will take a portion of your viewport and would be difficult to interact with for most games.

You'll want to translate keyboard and mouse events in a way that keeps parity with your game play.

References:

While it's certainly possible, depending on the game you will likely notice a performance difference between desktop and mobile device, especially if there are lots of vector animations, filters, etc.

If you want perfect performance on mobile devices you should rewrite your application with with something like the Starling Framework.




Sure, I can help you with that! Here's how you can perform an elbow analysis to determine the optimal number of clusters for your k-means model: 1. Load the necessary libraries and data: ``` library(tidyverse) library(cluster) df <- read.csv("healthcare_data.csv", header = TRUE) ``` 2. Clean and prepare the data by selecting only the relevant columns and removing any missing values: ``` df_clean <- df %>% select(Life.Expectancy, Healthcare.Spending) %>% drop_na() ``` 3. Scale the data to ensure that both variables have equal influence on the clustering: ``` df_scaled <- scale(df_clean) ``` 4. Run the k-means algorithm for a range of cluster values (e.g. 1 to 10) and calculate the total within-cluster sum of squares (WSS) for each: ``` wss <- sapply(1:10, function(k){ kmeans(df_scaled, k, nstart = 10)$tot.withinss }) ``` 5. Plot the WSS values against the number of clusters and identify the "elbow" point where adding more clusters does not significantly reduce the WSS: ``` plot(1:10, wss, type = "b", pch = 19, frame = FALSE, xlab = "Number of clusters K", ylab = "Total within-clusters sum of squares") ``` 6. Based on the plot, select the optimal number of clusters for your k-means model. The "elbow" point is usually where the curve starts to flatten out, indicating diminishing returns from adding more clusters. Here's the complete R code for performing an elbow analysis on the healthcare spending and life expectancy data: ``` library(tidyverse) library(cluster) # Load data df <- read.csv("healthcare_data.csv", header = TRUE) # Clean and prepare data df_clean <- df %>% select(Life.Expectancy, Healthcare.Spending) %>% drop_na() df_scaled <- scale(df_clean) # Elbow analysis wss <- sapply(1:10, function(k){ kmeans(df_scaled, k, nstart = 10)$tot.withinss }) plot(1:10, wss, type = "b", pch = 19, frame = FALSE, xlab = "Number of clusters K", ylab = "Total within-clusters sum of squares") ``` I hope this helps you determine the optimal number of clusters for your k-means model!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值