给定n个作业的集合J=(J1,J2,...,Jn)。每一个作业Ji都有两项任务分别在2台机器上完成。每个作业必须先由机器1处理,然后再由机器2处理。作业Ji需要机器j的处理时间为tji;i=1,2,...n;j=1,2。对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。则所有作业在机器2上完成处理的时间和f=F21+F21+...+F2n成为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。
分析:批处理作业调度问题要从n个作业的所有排列中找出最小完成时间和的作业调度,所以批处理作业调度的解空间是一颗排列树。按照回溯法搜索排列树的算法框架,设开始时x=[1,2,...,n]是所给的n个作业,则相应的排列树由x[1:n]的所有排列构成。
递归回溯
#include <iostream>
using namespace std;
class Flowshop;
int Flow(int **,int, int []);
void Swap(int &a, int &b)
{
int temp=a;
a=b;
b=temp;
}
class Flowshop
{
friend int Flow(int **,int, int []);
private:
void Backtrack(int i);
int **M, //各作业所需的处理时间
*x, //当前作业调度
*bestx, //当前最优作业调度
*f2, //机器2完成处理的时间
f1, //机器1完成处理的时间
f, //完成时间和
bestf, //当前最优值
n; //作业数
};
void Flowshop::Backtrack(int i)
{
if(i>n)
{//到达叶子结点
for(int j=1; j<=n; ++j)
bestx[j]=x[j];
bestf = f;
}else
for(int j=i; j<=n; ++j) // 因为问