单位离职率高达16%?五分钟教你如何基于离职分析优化企业人力资源

现如今,行业发展日新月异,时刻变化的市场环境带来了人才的快速流动,企业的竞争很多时候是选人用人的竞争。离职分析,作为企业人力资源管理中的一个重要环节,不仅能够帮助企业深入了解员工离职的原因、趋势和规律,还能够为企业制定有效的留人策略、优化人力资源配置提供科学依据,长远来看,可以促进企业的持续发展,形成稳定的竞争力。

然而,对于许多HR来说,离职分析是一个令人头疼的问题:数据收集不全、分析方法未知、结果解读不准确……诸多挑战摆在眼前,导致离职分析进程难以推进,效果也不尽如人意。HR究竟应该如何进行离职分析呢?

接下来,本文将从一个数据分析案例出发,为HR提供一份全面、实用的离职分析指南。本次分析利用帆软公司的BI工具FineBI分析实现,将人事数据进行清晰、处理和可视化,并根据可视化结果发现问题、指定对应的改进策略,帮助企业梳理人事分析的思路和优化策略,更好地应对员工离职挑战,留住优秀人才。

文章中提到的BI数据分析工具分享给大家——
https://s.fanruan.com/7lh3w
零基础快速上手,内置多种数据分析模板模型,实现高效数据自助分析!


一、案例离职分析业务背景

在当今竞争激烈的医药制造和销售行业中,XYZ公司作为一家拥有1470名员工的知名企业,其业务涵盖了研发、销售及人力资源管理等多个关键领域。然而,据最新统计数据显示,去年该公司大约有16%的员工选择离开公司,这一数字引起了公司管理层的关注。

与行业内的其他公司相比,XYZ公司的离职率明显偏高。据权威机构发布的报告,医药制造和销售行业的平均离职率普遍维持在10%左右,而XYZ公司的离职率却高达16%,远远超出了行业的平均水平。管理层认为,这种程度的员工流失对公司不利,一是导致项目推迟,影响公司的收入,同时也降低了在合作伙伴和客户的信任感;二是需要维持大量的人力资源处理离职、招聘新员工、培训新员工,同时新员工也存在无法胜任工作的问题。

XYZ公司人力资源主管找到咨询顾问,希望能通过离职分析,帮助公司减少员工流失率。在接下来的内容中,我们将作为咨询顾问,详细对XYZ公司的流失员工进行离职分析,并通过这一分析过程揭示员工离职的深层次原因,据此制定有效的应对策略。

二、高离职率原因分析思路

所有处理离职分析的HR都会关注的问题主要有:公司整体的离职率是多少?哪类员工离职率相比平均水平较高?为什么此类员工的离职率高?建议公司采取什么样的举措?

基于这些问题,我们可以把解决思路拆解为现状分析、根因分析、提出建议这三大步骤,详见下方思维导图:

  • 现状分析:基于5W2H框架,分析高离职率员工的特征

b77b72918febc759ba11db2dcd3843a5.jpeg

  • 根因分析:先定性后定量,先基于相关性分析找到影响离职的核心要素,再定量分析各要素的详细情况

3878bf6136aa018d83f384b12186e75b.jpeg

  • 提出建议:基于人货场的思路提出建议,并基于决策树预测员工离职的倾向性

c30627a8f2afa3d42856278138236b7e.jpeg

三、离职数据处理

1、明确数据指标口径

a2b1dafb4aaa4d2e1ac1dc95ecf4a19a.jpeg

2、字段转义

对包含数值代号的字段进行转义,包含学历、职位级别、工作满意度、工作关系满意度、工作环境满意度、工作生活平衡度、工作参与度、绩效评价等。例如,把职位级别中的“1”转义为“助理”,“2”转义为初级,“3”为“中级”,“4”为高级,“5”为管理者。

fab0f903be282464c18b0075d6455eea.jpeg

如果还有一些英文枚举的字段,需要把它们转义成中文。如果有字段名称是英文形式,记得事先修改成中文。

3、离职相关因素分析

相关性分析最常见的是皮尔逊Pearson相关性分析和斯皮尔曼Spearman相关性分析,Pearson要求数据集是连续型变量,并且符合正态分布,而Spearman相关系数没有这个要求,本案例中存在二分类/有序分类/无序分类等非连续型变量,因此采用Spearman相关性分析。相关性分析主要通过Python完成,然后将相关系数结果导入到FineBI进行分析和可视化。

1170bd18881aac9403e55a1c68836af6.jpeg


四、离职数据可视化及分析

1、哪类员工离职率高

  • 通过各维度的分析,离职员工画像为:研发和销售部门的基层岗位、入职时间短(3年以内)、级别低(助理级别)、年龄小(18-23岁)、工作经历少(3年以内)、和当前主管共事时间短(1年内)、工作满意度和环境满意度低
  • 离职员工来源:离职237人主要集中在研发和销售部门,占总离职人数的95%;离职人员主要集中在基层岗位,其中实验室技术员、销售经理、研究员、销售代表占总离职人数的84%
  • 各部门离职率:总体离职率16%,销售部门和人力资源部门资源的离职率显著高于平均水平,分别为21%、19%,研发部门的离职率较低为14%
  • 各司龄区间离职率:司龄3年以内离职率最高,为30%,随着司龄逐渐变大,基本呈下降趋势
  • 职位级别离职率:助理级别离职率最高,为26%,其次是中级级别,为15%
  • 各出差频率的离职率:经常出差的员工离职率最高,为25%
  • 各年龄区间离职率:18-23岁的员工离职率最高,男性18-23岁离职率为41%,女性18-23岁离职率为56%;对于男性来说,未婚者相比已婚者的离职率普遍更高
  • 各工作年数(所有工作经历)区间离职率:总工作年数3年以内离职率最高,为44%,随工作年数逐渐变大,基本呈下降趋势
  • 按与现任主管共事年数区间的离职率:共事在1年内离职率最高,为32%,随着年数增多,基本呈下降趋势
  • 通过比对平均值和分布,离职员工的工作满意度和工作环境满意度相比未离职员工低,其他指标指标差异不大cb224aa35ec99c172e7e4f1ca3be9d70.jpeg

2、为什么员工离职率高

基于和离职相关性最高的top5因素为:加班、月收入、总工作年数、司龄、职级,而月收入和总工作年数、司龄、职级的相关性非常高,因此主要围绕加班和月收入为主线展开分析:

  • 加班导致工作压力大,进而离职:五个基层岗位人群(销售代表、实验室技术员、人力资源岗位、销售经理、研究员)的加班率为24%-33%,此部分加班人群的离职率显著高于非加班人群的离职率,但加班人群和非加班人群的收入几乎无差异。以销售代表为例,加班人群的流失率为67%,非加班人群的流失率为29%,加班人群的平均月收入约为2500+,非加班人群的平均月收入约为2600+
  • 月收入较公司平均水平差距大,虽有加薪,但仍无法挽留住基层员工:四个基层岗位人群(销售代表、研究员、实验室技术员、HR)占公司总员工的49%,但平均月收入为2626-4623,仍远低于公司平均水平的6503,此四个岗位的离职率较高。以销售代表为例,平均月收入为2626,但离职率为40%
  • 月收入与项目投入、绩效未挂钩,无法激发积极性,向上通道窄:月收入与项目参与度、绩效评级的相关性很低,说明对项目付出多、绩效优异的员工拿到更高薪酬的可能性低。而月收入与总工作年数、司龄存在显著的关系,年轻员工的薪酬待遇普遍比老员工低。以上两个因素导致年轻员工的向上通道窄,无法激发工作积极性,进而导致离职71872b14293337bd5f4e3cd70afcc080.jpeg

3、如何降低离职率

通过对离职人群画像和离职原因的分析,代入一位名为Alex员工,可以想象如下场景:Alex是一位21岁的未婚男性,入职XYZ公司的销售代表岗位刚满1年,在去年的重点新药销售项目中频繁去医院客户城市出差、加班加点终于在年底取得了较好的成绩,主管对Alex的年度项目参与度和绩效等级都给了不错的评价。今年Alex的月收入虽然有所提升,但仍然相比XYZ公司收入水平差很多,相比外部公司也差。Alex认为去年的项目付出没有得到应有的回报,并且他也发现和自己类似年龄和司龄的员工的收入都非常低,这让他减少了工作的积极性,同时对未来的发展充满了担忧,进而向主管提出离职。

对XYZ公司提出如下4条建议:

  • 工作环境:直接主管加强对频繁出差、加班人群的关怀,同时识别是否可以通过线上会议减少部分非必要的出差,通过增强培训辅导、开发工具的方式提升员工的工作效率,减少加班。
  • 绩效体系:对绩效等级评价精细化,避免只存在两类等级导致吃大锅饭,绩效评级要根据项目参与度拉开差距,同时面向员工宣传清晰绩效标准。
  • 薪酬体系:加强绩效对职级的影响,使得高绩效导向高职级进而导向高月收入、股票水平,使得员工能看到付出带来的正向效果,提升工作的积极性。
  • 离职预测:定期对人员离职情况进行回顾和预测,提前对高离职倾向员工进行关怀和沟通,避免员工已提出离职才被动相应。

五、本次离职分析工具推荐

在离职分析的过程中,一款强大的数据分析工具能够极大地提升分析的效率和准确性。上述数据分析案例用到的BI工具FineBI,作为一款集数据整合、数据分析和数据可视化于一体的商业智能工具,无疑是离职分析领域的得力助手。其具有以下显著优势:

1、易于上手和操作

FineBI的操作界面简洁友好,用户无需具备复杂的编程知识即可上手使用。在离职分析中,通过简单的拖拽操作,选择自己需要分析的字段,几秒内就可以看到自己的数据,通过层级的收起和展开,下钻上卷,可以迅速的了解数据的汇总情况,极大地提高了分析效率。

2、强大的数据整合能力

FineBI能够轻松接入各种数据源,包括多种数据库、Excel、CSV等,实现数据的快速整合。

192631d307adc8f360dbe62bd8041f70.jpeg

在离职分析中,这意味着你可以将来自人力资源系统、财务系统、业务系统等多方面的数据整合在一起,形成一个全面的数据集,为后续的分析提供坚实的数据基础。

3、丰富的数据编辑功能

1)自助数据集

重点打造的自助数据集,提供了新增列,分组汇总,过滤,排序,上下合并,左右合并等功能,让用户以极低的学习成本将数据处理成自己需要的结果。让IT更专注于基础数据的准备,将真正对数据的分析处理交还于更熟悉业务的分析人员。

0a8b60fdf010b319a8ec0740af6c4285.jpeg

2)超强函数能力

除了常规函数,FineBI 还提供了进阶函数:

  • 聚合函数:可以对一组数据进行汇总,一般使用聚合函数汇总后的值进行再计算;
  • 分析函数:FineBI6.0 版本新增的函数类型,包括 def、def-add、def-sub 和 earlier 函数。分析函数结合原来的基础函数后,能够实现基于有限数据输出任意层级任意复杂度的计算指标,覆盖了更多复杂的业务场景,解决用户方案实现难题。

3)丰富的分析模型

FineBI 推出多种数据分析模型,帮助用户更好的使用 BI 进行数据分析。

8a194f7a547fa2cea9e4edbd4929513a.jpeg

4、直观的数据可视化效果

FineBI具备强大的数据可视化能力,可以将分析结果以图表、报表等形式直观地呈现出来。在离职分析中,你可以通过饼图、柱状图、折线图等可视化组件展示离职员工的分布特征、离职原因等关键信息,使管理层能够快速了解离职情况,并作出决策。

3a97a2ec98ac0b5bf2e61eb1e38e8b62.jpeg

FineBI数据看板Demo展示:

76cc0c25329a1d87585e6844a135e03c.jpeg

f555984ed97630284f79a739fd34d3a4.jpeg

若想了解FineBI的更多功能与应用,您可以点击下方组件,快速获得帆软为您提供的方案建议、免费的产品试用和同行业标杆案例学习参考。

文章中提到的BI数据分析工具分享给大家——
https://s.fanruan.com/7lh3w
零基础快速上手,内置多种数据分析模板模型,实现高效数据自助分析!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leo.yuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值