一文读懂:数据湖/数据中台/数据资产……十大数据领域常见概念

目录

一、数据湖:海量数据的原始存储与分析平台

1.定义

2.核心特点

3.数据领域应用

二、数据仓库:结构化数据存储系统

1.定义

2.核心特点

3.数据领域应用

三、湖仓一体:融合架构下的数据治理与实时分析

1.定义

2.核心特点

3.数据领域应用

四、数据中台:企业数据整合与共享的核心平台

1.定义

2.核心特点

3.数据领域应用

五、数联网:实现数据跨域互联互通的网络架构

1.定义

2.核心特点

3.数据领域应用

六、云计算:弹性计算资源的高效服务模式

1.定义

2.核心特点

3.数据领域应用

七、大数据:数字经济的核心资源

1.定义

2.核心特点

3.数据领域应用

八、数据要素:驱动经济发展的新型生产要素

1.定义

2.核心特点

3.数据领域应用

九、数据资产:企业数字化转型的重要资产

1.定义

2.核心特点

3.数据领域应用

十、数字经济:数据驱动的新型经济模式

1.定义

2.核心特点

3.数据领域应用

总结


当我们在谈论数据的时候,究竟在谈论什么?

2024年,数据资产入表元年开启,企业资产负债表首次出现“数据资源”科目。这一事件标志着数据要素时代的到来:数据正在从副产品进化为生产要素,最终成为企业的战略资产。然而,围绕数据的专业术语很多,乍一看不少人可能对这些名词感到困惑。这篇文章就用简单易懂的语言,快速梳理埋点→数据湖→区块链→数据中台→数联网→云计算→大数据→数据要素→数据资产→数字经济这十大高频词,帮你构建完整的数据知识体系,用一张图串联整个数据生态链。

一、数据湖:海量数据的原始存储与分析平台

1.定义

数据湖是一种集中存储原始多类型数据的存储库,包括结构化、半结构化和非结构化等等数据,支持灵活多样的数据分析方式。它为数据的原始形态提供了安全、高效的存储环境,同时为后续的深度挖掘和机器学习等应用奠定了基础。

2.核心特点

保真性、低成本扩展、探索友好

3.数据领域应用

存储用户交易日志、设备指纹等原始数据,用于构建反欺诈模型,精准识别异常交易行为。

二、数据仓库:结构化数据存储系统

1.定义

数据仓库通过清洗、转换、加载(ETL)流程将多源结构化数据聚合为统一模型,可以提供高性能查询支持,服务于商业智能(BI)、报表生成等确定性分析场景。

2.核心特点

主题导向、数据一致性、查询优化

3.数据领域应用

通过ETL工具整合销售系统、CRM、ERP等业务数据,构建客户画像,支撑月度经营分析报告与销售趋势预测。但这些数据分散在不同系统,清洗转换规则又比较复杂,更头疼的是,数据经过从采集到可使用的漫长过程中,时效性还难以保障。

这里给大家推荐一下我最近正在使用的FineDataLink平台,支持ETL/ELT两种开发方式,像是MySQL、MongoDB、API接口等多种数据源,都能用它来处理。对口径不统一或者质量低的数据,可以用FineDataLink来定时抽取并转化,完成对数据的挖掘和分析工作,在帮我搭建数据仓库的过程中真的省下了不少力。免费FDL激活

三、湖仓一体:融合架构下的数据治理与实时分析

1.定义

湖仓一体(Lakehouse)通过统一元数据管理打破数据湖与数据仓库的边界,在保留原始数据存储能力的同时,引入事务管理、模式约束等数据仓库特性,实现跨层级数据的实时分析与协同计算。

2.核心特点

ACID事务支持、多工作负载兼容、流批一体处理

3.数据领域应用

整合IoT设备传感器数据与业务系统,优化智能制造中的预测性维护。

四、数据中台:企业数据整合与共享的核心平台

1.定义

数据中台是企业内部整合分散数据资源、提供统一治理和数据服务化输出的能力平台。它通过数据的标准化、资产化和共享化,提升企业的数据运营效率和业务创新能力。

2.核心特点

数据资产化,即将原始数据加工为标准化的API接口、标签体系,形成可复用的数据资产。

3.数据领域应用

通过中台API调用用户画像数据,实现精准的商品推荐,提升用户体验和转化率。

五、数联网:实现数据跨域互联互通的网络架构

1.定义

数联网是一种实现跨域数据互联互通的网络架构,通过标准化的协议和标识体系,打破数据孤岛,促进数据的高效流通和共享。

2.核心特点

(1)标识体系:为数字对象分配唯一标识(类似URL),支持精准寻址和数据定位。

(2)分层治理:通过数据目录管理、权限控制和异常监控,实现数据的精细化治理。

(3)生态协同:需要政府、企业、技术厂商等多方共建标准,形成开放、协同的数据生态。

3.数据领域应用

政务数据共享,实现跨省市户籍、社保数据的在线核验;产业数据交换,优化生产流程。

六、云计算:弹性计算资源的高效服务模式

1.定义

云计算是一种通过互联网提供弹性计算资源(的服务模式。它为企业提供了按需使用、灵活扩展的IT资源,降低了企业的运营成本和技术门槛。

2.核心特点

按需付费、全球覆盖、混合部署

3.数据领域应用

通过云计算弹性扩容,保障业务稳定运行;通过云端备份数据,防范本地数据丢失。

七、大数据:数字经济的核心资源

1.定义

大数据是指具备4V特征(Volume体量大、Variety类型多、Velocity速度快、Value密度低)的数据集合。它涵盖了从结构化数据到非结构化数据的多种类型,是数字经济的重要基础资源。

2.核心特点

技术栈分层、实时处理、长尾价值

3.数据领域应用

分析千万级交易记录,识别异常模式,实时拦截欺诈行为。

八、数据要素:驱动经济发展的新型生产要素

1.定义

数据要素是指可参与生产、创造经济价值的数据资源。它被列为继土地、劳动力、资本、技术之后的第五大生产要素,是数字经济的核心驱动力。

2.核心特点

非排他性、乘数效应、权属复杂

3.数据领域应用

(1)智慧城市:通过交通数据优化信号灯配时,降低拥堵率,提升城市运行效率。

(2)碳足迹追踪:利用企业能耗数据驱动绿色生产决策,助力可持续发展。

九、数据资产:企业数字化转型的重要资产

1.定义

数据资产是指经过确权、加工后能够为企业带来经济利益的数据资源。

2.核心特点

(1)可计量性:通过成本法、收益法等评估模型,对数据资产的价值进行量化评估。

(2)生命周期:数据资产的价值随时间衰减,如实时位置数据的时效性较强,需及时利用。

(3)合规底线:需符合GDPR等隐私保护法规,确保数据的合法合规使用。

3.数据领域应用

(1)数据质押融资:银行接受企业客户画像数据作为贷款抵押,帮助企业解决融资难题。

(2)资产证券化:将气象数据等打包成金融产品在交易所挂牌,实现数据资产的资本化运作。

十、数字经济:数据驱动的新型经济模式

1.定义

数字经济是指以数据为关键要素、数字技术为核心驱动力的经济模式,涵盖了5G、人工智能、云计算等数字产业化和智能制造、智慧农业等产业数字化两大领域。

2.核心特点

双轮驱动、平台效应、普惠性

3.数据领域应用

建立数字孪生工厂,通过工业互联网数据模拟生产线优化方案,实现生产过程的智能化。

总结

从微观的用户行为追踪到宏观的经济模式变革,数据的概念和应用贯穿始终。从埋点到数据湖,最终到数字经济,形成了数据从产生到价值变现的完整链条。这不仅是技术生态还原,更是数据从原始状态到资本化的价值跃迁路径。然而,当前最大的断层在于:多数企业只完成了前几个环节的数据基建,却没有打通价值转化的“最后一公里”。未来,数据要素市场化将释放更大的经济价值,数据的价值链将贯穿从采集、存储、处理到应用的全过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leo.yuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值