目录
订单旺季时原材料总是不够用,淡季又堆满仓库吃灰;
供应商价格忽高忽低,质量还像开盲盒;
审批流程卡在领导签字上,市场变化永远比采购速度快一拍……
这些问题的出现,往往不是采购部门不努力,而是一套落后过时的采购管理模式在拖后腿。
如今,制造业的竞争早已不是单纯拼生产速度,而是谁能用更低的成本买到更靠谱的货,谁就能抢到市场先机。面对上百家供应商、成千上万种零部件,如何让采购管理摆脱“一团乱麻”的困境?
我最近看到一个10年采购主管亲身分享的实践案例或许可以提供一些新的思路和参考。这个案例分析思路和整体实操路径做的很详细,从关注指标、针对性分析、问题追踪三个维度展开,并且采用词云图、正态分布等多种分析方法,搭建的可视化看板内容也很丰富,数据交互性分析很全面,非常值得大家学习!
特此声明,此案例由【江北洪兴社】团队制作,参加了2022BI数据分析大赛,并获得了优异的成绩,案例的采购管理分析思路和数据分析方法很值得大家参考和借鉴。
一、案例背景
案例介绍的是一家主要生产电子产品的制造业企业,但产品零部件种类很多,涉及上百家供应商。在以往的采购管理中,面临很多问题。
1.需求预测
采购需求预测不准确,时而出现原材料积压,占用大量资金;时而又因原材料短缺导致生产线停工,造成生产延误。
2.供应商管理
在供应商管理方面,缺乏科学的评估体系,合作的供应商产品质量参差不齐,部分供应商交货不及时,严重影响了企业的生产计划和产品质量。
3.采购周期长
采购流程繁琐复杂,审批环节众多,导致采购周期长,效率低下,无法快速响应市场变化。
4.采购成本分析不全面
企业难以获取全面、准确的采购数据,对于采购成本的分析也停留在表面,难以深入挖掘成本优化的潜力。
二、分析思路
乍一看,问题怎么这么多?到底怎么才能进行高效采购管理?别急!这里给大家分享一个解决思路的大致框架。
1.数据提取
数据提取是分析的基础,它涉及到从企业系统中提取相关的供应商档案清单,包括2020-2021年的采购订单、采购到货、报检、检验、采购入库等数据。这篇案例是借助一站式数据分析平台FineBI来做的,利用FineBI的数据接入功能,可以连接到ERP、CRM、SCM等各种业务系统,实时收集供应商数据、质量反馈、异常订单等信息。通过拖拽式操作还可以快速布局,直接搭建采购分析仪表盘,并深入分析各项采购指标。我把工具下载链接要到了,大家可以跟着一起动手来操作:FineBI激活
2.关注指标
主要关注两个指标:供应商供应指标和供应商质量指标。这两个指标是评估供应商表现和采购流程效率的关键。
(1)供应商供应指标:包括交货时间、供应稳定性和供应多样性,这些指标直接影响企业的生产计划和库存管理。
(2)供应商质量指标:包括合格率、退货率和持续改进能力,这些指标直接关系到企业的运营成本和客户满意度。
3.针对性分析
针对性分析是整个分析的核心,通过详细分析供应商的概况、供应指标和质量指标来识别问题和改进机会。
(1)供应商概况:
①供应商数量概况:分析供应商的数量变化,了解供应商的集中度和分散度。
②供应商类型分布:区分不同类型的供应商,分析其在供应链中的作用。
③采购金额按区间分布占比:通过采购金额区间分析,识别关键供应商和潜在的风险点。
④重点供应商分析:对采购金额排名前五的供应商进行深入分析,了解其对企业供应链的影响。
(2)供应商供应指标:
①交货及时率:分析供应商交货的及时性,包括年月趋势和去年同期比较,以及每个订单的详细分析。
②交货及时率的异常点分析:通过趋势图发现异常点,进行深入分析,找出原因并提出改进措施。
(3)供应商质量指标:
①物料合格率:分析物料合格率的变化趋势,包括年月趋势和去年同期比较,以及每个订单的详细分析。
②质量异常点分析:通过趋势图发现质量异常点,进行深入分析,找出原因并提出改进措施。
4.问题跟踪
问题跟踪部分关注于通过数据分析发现和解决采购过程中的问题。
(1)异常点识别:通过趋势图和数据分析,识别采购过程中的异常点,如交货延迟、质量下降等。
(2)问题排查:对识别出的异常点进行详细排查,找出问题的根本原因。
(3)改进措施:根据问题分析结果,提出具体的改进措施,如优化供应商选择、改进质量控制流程等。
(4)持续监控:建立持续监控机制,定期跟踪改进措施的实施效果,确保问题得到有效解决。
三、分析步骤
当然,上面我只是把思路给讲清楚了,方法再好还是要落地,所以根据这个思路使用FineBI的具体落地步骤有哪些呢?因为篇幅有限,这里我给大家归纳整理成四大关键步骤:
1.数据准备
(1)整合多源数据:整合企业内部多个数据源的数据,如ERP系统中的采购订单数据、库存数据、供应商信息数据;生产管理系统中的生产计划数据、原材料消耗数据;销售管理系统中的销售订单数据、销售预测数据等。确保数据的准确性、完整性和一致性。
(2)数据导入:将整理好的数据导入到FineBI中,可以通过数据库直连、Excel导入等多种方式进行数据加载。如果企业的采购数据存储在MySQL数据库中,可在FineBI中配置MySQL数据源连接,将相关数据表导入到FineBI的数据仓库中。
2.创建数据集
对导入的数据进行清洗和预处理,包括去除重复数据、处理缺失值和异常值等。基于清洗后的数据,创建采购管理相关的数据集。创建包含供应商名称、采购订单号、采购金额、交货日期、产品质量检验结果等字段的供应商采购数据集;创建包含生产计划编号、原材料需求数量、实际采购数量、采购时间等字段的采购需求数据集等。
3.可视化分析
搭建供应商综合评估看板,将供应商的各项评估指标作为维度,直观展示每个供应商在不同方面的表现,方便对比和筛选潜在供应商。用饼图分析不同供应商的采购金额占比,确定主要供应商和次要供应商,以便采取差异化的管理策略。结合折线图对比不同供应商的交货及时率,对于交货及时率较低的供应商进行重点分析,查找原因。
4.建立数据看板
将上述创建的各类可视化图表进行整合,搭建采购管理数据看板。为数据看板添加交互功能,如筛选器、联动等。在供应商管理看板中,设置供应商名称筛选器,当选择某一供应商时,相关的图表数据会自动切换为该供应商的详细信息,方便深入分析单个供应商的情况。
四、总结
高效的采购管理并非一蹴而就,而是需要从需求预测、供应商筛选到流程优化形成闭环管理,并通过数据驱动持续迭代。通过建立科学的评估体系、精准的成本控制模型以及可视化的数据看板,企业不仅能实现采购效率的跃升,更能深度挖掘降本潜力,为生产稳定性和市场敏捷性提供保障。未来,通过引入智能采购管理系统,企业不仅能实现采购全流程的数字化闭环,更能将供应链从成本中心转化为价值驱动引擎。