项目场景:
给定一个只包含数字的字符串,用以表示一个 IP 地址,返回所有可能从 s 获得的有效 IP 地址 。你可以按任何顺序返回答案。有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 ‘.’ 分隔。
例如:“0.1.2.201” 和 “192.168.1.1” 是 有效 IP 地址,但是 “0.011.255.245”、“192.168.1.312” 和 “192.168@1.1” 是 无效 IP 地址。
示例:
- 输入:s = “25525511135”
输出:[“255.255.11.135”,“255.255.111.35”] - 输入:s = “0000”
输出:[“0.0.0.0”] - 输入:s = “1111”
输出:[“1.1.1.1”] - 输入:s = “010010”
输出:[“0.10.0.10”,“0.100.1.0”]
解法:
1.回溯
我们用 COUNT=4 表示 IP 地址的段数。
时间复杂度:
O
(
3
SEG_COUNT
×
∣
s
∣
)
O(3^\text{SEG\_COUNT} \times |s|)
O(3SEG_COUNT×∣s∣)
由于 IP 地址的每一段的位数不会超过 3,因此在递归的每一层,我们最多只会深入到下一层的 3 种情况。由于 COUNT=4,对应着递归的最大层数。如果我们复原出了一种满足题目要求的 IP 地址,那么需要 O(|s|)的时间将其加入答案数组中。
空间复杂度:O(COUNT),这里只计入除了用来存储答案数组以外的额外空间复杂度。递归使用的空间与递归的最大深度COUNT 成正比。
class Solution {
private:
void dfs(string& s, vector<string>& res, string& combine, int depth, int start)
{
if(depth == 4 || start == s.size()) //若递归深度达到4 或 已遍历到字符串末尾 则退出
{
if(depth == 4 && start == s.size()) //若递归深度达到4 且 已遍历到字符串末尾 则存入结果数组
{
res.push_back(combine.substr(0, combine.size() - 1));
}
return;
}
for(int i = 1; i <= 3; i++) //IP地址每一段的位数最多为3
{
if(start + i > s.size()) //超出数组空间 退出
{
return;
}
if(s[start] == '0' && i != 1) //出现"01"等情况 退出
{
return;
}
if(i == 3 && s.substr(start, i) > "255") //出现大于255 退出
{
return;
}
combine += s.substr(start, i);
combine.push_back('.');
dfs(s, res, combine, depth + 1, start + i);
combine = combine.substr(0, combine.size() - i - 1);
}
}
public:
vector<string> restoreIpAddresses(string s) {
vector<string> res;
string combine;
dfs(s, res, combine, 0, 0);
return res;
}
};