练习代码(3) 3.1import urllib.requestresponse = urllib.request.urlopen('http://placekitten.com/g/500/600')cat_img =response.read()with open('cat_500_600','wb') as f: f.write(cat_img)3.2def squartRootBi(x
练习代码(2) 2.1import easyguieasygui.msgbox("hello,world!")2.2import easygui as gimport syswhile 1: g.msgbox("welcome") msg =("Do you hunger for knowledge?") title = "game"
练习代码(1) 1.1print("猜猜我是谁?")tmp = input("猜猜我是谁?:")guess = int(tmp)if guess == 520: print("you're right")else: print("you're wrong")print("game over")1.2import randomsecret = random.randint(1,5)pr
使用python写的调内参的简易程序 根据灰度值来推测调齐内参所需要的蛋白质浓度(以最简单的最小二乘法来计算):一开始上样的时候最好等体积上样(蛋白溶度调成一致)。确保每个样的上样体积一致。多做2个重复取平均值。然后采用灰度分析进行内参调整,从而调整之后的上样量。自变量与因变量的一系列对应数据,(x1,y1),(x2,y2),(x3,y3),...(xn,yn),分别是已经做好的实验的蛋白质浓度和相对应的灰度值。Input,以数组
python初探 Python作为一种高维语言需要在一定的环境运行。Shell和file模式都可以运行python语句。本质上都是通过定义一定的变量,然后通过一定的程序运行,最终达到一定的运算的目的。期间可以形成各种不同层次的耦合,即各种我们可以调用的函数其中搜索是一种匹配运算。多层次的信息匹配。语言的沟通,不同层次的耦合需要最终信息的交互。记忆的存储功能,抽象化。语法基础:定义是第一,这是
网页设计初探 1用户账户的注册,这是开发者的第一步,我们需要在前人搭建的架构平台上之间构建自己的网页,可以调用各种模块,可以节省开发的时间和精力。2网页的架构可以理解为各种文本、图像等等文件的显示,因此我们需要采取创建文件夹的形式来存储这些文件。3网址的设置,各种域名、IP等等的设置。4服务器的连接,这是处理各种请求和数据传输的底层。5建立索引,这是结构化组织各种文件路径,以方便寻找。毕竟最后的
如何结合生物科研和计算机科学? 生物科研的基本思路是发现对象之间的关系,最简单的如有特定基因的表达能够促进细胞分化,但这是结果,是一将功成万骨枯,一篇文章能够得出这种确切的关系就已经很成功了,能够作为接下来研究的基石之一,然而一个论点需要很多证据来支持,需要做很多实验要有很多阳性结果,而且要从不同的角度来验证(正面是阳性结果,然后通过一定处理如基因敲除之类来制造负面的变化,然后通过施加一定的处理来回复原来的阳性结果),从细胞做到
java初探 程序设计语言的关键在于编译器,平台进而开发工具包JDK。面向对象,无关平台,安全稳定,支持多线程,丰富的类库核心机制:虚拟机,代码安全性检测,垃圾收集机制;对象是对现实的抽象,类是对对象的抽象(模板);对象是类的实例,现实是对象的表达。这是一个升维的过程。属性是变量,行为是函数;这也是一种封装的方法,能够通过将属性和行为封装在类,从而允许程序定义很多类;而且这种方法隐藏其类的细节,让用
模式识别的数学观点 模式识别本质上是对高维结构的把握,如隐马尔科夫序列的各个状态的比例,具体的表达就是我们观察的对象。特定的序列具有不动点的地位,可以根据特定的seed序列不断延伸,根据动态规划,选择分数最高的序列。其中的基于局部最优的继续寻找是如同贝叶斯公式的方法,即使不能找到整体最优至少能够找到的局部最优与整体最优是接近的。对无限多的信息的高维处理过程(不同层次的信息存在维度的差异)可以视为是一个模式识别
对香农《通信的数学理论》的理解 (网络的一个层次就是信息的流动)Abstract:信息的形式与信息传递的路径是耦合的。(介绍相关的重要工作,引用)信息的传递是模糊的,即最后可能只能有近似信息的传递。于是这是多通路多可能的传递路径,而本征的路径是符合能量最低化的,其他路径使得通路具有一定的稳定性。(自己工作在前人的基础的衍生)基本假设:选择每条消息的可能性不相等,这是基于网络的分布性质,从而体现一定的幂律分布。对数函数是我
复变函数1 复数是一种数域(对加、减、乘、除运算封闭)的突破,可以视为是更底层的抽象,而我们平常所能够理解的实数是其选择性表达的结果,这样这种数学工具就有更加强大的对现实的解释能力。对于特定的复杂的实函数的积分,我们可以通过升维到复数域,在这种更加底层的层次进行我们所熟悉的运算;对于微分方程也可以积分变换为一定的代数方程。三大变换,傅里叶变换、拉普拉斯变换、Z变换是我们对复杂信号的分析和处理的有力工具。而小波
概率3 3概率独立性:A跟B这两个事件同时发生的概率等于它们个别发生的概率相乘,则A跟B是独立的事件,即彼此不受影响。或者在一个事件发生情况之下与另外这个事件会发生的概率跟该那个事件没有发生的概率相等。温伯格遗传平衡就是基于遗传因子A和a的基因频率与其形成的基因型频率(AA,Aa,aa)的关系:P(AA): P(Aa): P(aa)= P(A)^2: 2P(A)P(a): P(a)^2.概率计算:
概率2 2概率的公理体系:1任何一个事件发生的概率一定都是大于等于零的2样本空间的事件概率之和为一3互斥事件的并集发生的概率等于各自概率加和通过底层的假设构建的系统,如同欧几里得几何公理体系就是从有限的5条公理推导出各种复杂的几何关系,而改变第五公设形成的黎曼几何和洛巴切夫斯基几何。不同的假设可以导出不同的公理体系,从而可以形成更加复杂的定理及其性质。这是大厦的基底,只要公理在特定领域也成立,那么后续
软件工程初步 软件的开发,多功能模块的组合,因为底层的各种代码模块是面向过程的,我们需要在足够高维的层次才能做到让人理解,毕竟现代的傻瓜式操作才能做到符合人类习惯的思维习惯,一般情况人们只需要理解输入和输出的相关性,其中的具体实现可以视为一种黑箱,是专业人员思考的范畴。因而我们需要在抽象的层次不断升维,从面向过程到面向对象,从各种代码到类、各种模块、甚至到各种构件的重用(开发效率高),最后能够在这些层次的选择性
关于图像处理的一些不成熟的看法 图像其实是一系列的矩阵,其对不同的信息以矩阵的形式来存储(像素。),并且在这个基础上我们可以施加不同的处理,如各种模式识别。最基本的一个应用是灰度分析,能够识别WB的条带所揭示的蛋白质的相对浓度。而具体的彩色图像是不同的三基色的不同比例的组合,也是可以使用矩阵来存储的。然后我们需要具体的矩阵存储的信息所揭示的高维信息,这需要我们已经有数据库层次的信息存储,然后可以根据特征的匹配来形成特定的模式识别
数据结构初步 数据结构的要素包括数据的逻辑结构(呈现在用户面前的数据形式),存储结构和数据运算,其中逻辑结构可以分为线性结构,有线性表、栈、队列、串和数组,非线性结构有树结构和图结构;存储结构分为顺序结构、链式结构、索引结构和散列结构;数据运算有插入、修改、查找和排序运算。数据是能够输入并且能够被计算机处理的符号的集合,是信息的符号表示形式。其元素是数据的基本单位及数据项。数据结构是带结构的数据元素的集合。
结构体 结构体(新的数据类型),使用一组变量来描述同一事物,将一个高维的事物分解为低维的不同事物,类似于使用不同属性来描述一个对象。如学生找过对象可以以其ID号,姓名,性别,分数,住址等等变量来描述,理论上这些属性越多,可以确定的对象就越精确。将结构体视为普通数据类型的一种升维,那么基本数据类型的各种性质如叠套,如作为参数用于传递到函数等等都是可以的。首先是构造一个新的数据类型即结构体:struct
概率1 1我们希望能够将来结合线性代数和微积分等等相关的数学分支来更好地理解随机过程和模式识别等等学科。因为我们要做的建模需要很好地理解这些思想才能有好的算法,如动态规划以及之后用于序列匹配的BLAST算法就是我们的目标,从公式和定理到具体的应用。概率论的公理化的前置条件,测度论是一种基本前提假设和共同认知,毕竟数学要严谨。概率是基于测度的一组度量,就如同度量衡需要提前定义然后才能各种描述。借助概率论,我
轻叩面向对象的大门 面向对象的编程其实是一种数学的思想,其实程序设计中变量/函数数据结构等等的各种定义也是参考数学的公理化体系的构建过程,我们通过在计算机中建立一定的抽象对象,然后在这个层次进行处理,然后可以通过一定的转换关系来映射到现实世界,从而能够对现实世界产生一定的指导。我们通过对对象的定义ABCDEFG,然后通过一定的语句来构建不同对象之间的关系(函数形成,如同哈密顿体系的形成,通过对存在的解进行各种边界
编程需要的数学思维 编程所需要的数学思维,足够抽象,但又需要落实到向量和矩阵的具体数据结构层次来实现各种程序。其中初级的模仿是仿照微积分的构建,通过对极限层次的无穷小量来遍历叠加来构建高维的结构。然后我们可以构建逻辑的微积分,这是基于图灵机的序列运算,本质上是对信息的确定,是对不确定性的消减。序列的运算可以考虑数学归纳法的迭代和递归。而序列的不同表达模式的组合,序列的运算是自指结构。周期的形成,如mod的求余数。