三、递归树分析法

本文探讨了使用递归树和归纳法来分析算法的时间复杂度。通过递归树分析,得出算法的上界,再用归纳法证明这个上界同样为下界。具体分为三种情况讨论,展示了从非严谨分析到严谨证明的过程,并强调了这种方法在处理不符合主定理情形时的价值。递归树和归纳法结合的证明策略在算法分析中具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 问题

在这里插入图片描述

2 解决思路

使用递归树猜想一个上界,使用归纳法证明上界也是下界。

2.1 使用递归树(recursion tree)猜想结论(不严谨)

使用递归树两点:1⃣️逐行展开;2⃣️逐行相加;

逐行展开

本质上是分解问题,每个非叶子结点表示分解+合并问题所付出的代价,叶子结点表示解决边界问题所付出的代价。
在这里插入图片描述

逐层求和

这里要注意,除去非叶子结点,每一层的和呈现出等比数列性质,计算整个代价 T ( n ) T(n) T(n)本质上就是分解(合并)问题付出的代价+解决递归边界付出的代价。

Case1:

分解问题的代价:
在这里插入图片描述
在这里插入图片描述
解决递归边界的代价:
Θ ( n l o g b a ) \Theta(n^{log_ba}) Θ(nlogba<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值