1 问题
2 解决思路
使用递归树猜想一个上界,使用归纳法证明上界也是下界。
2.1 使用递归树(recursion tree)猜想结论(不严谨)
使用递归树两点:1⃣️逐行展开;2⃣️逐行相加;
逐行展开
本质上是分解问题,每个非叶子结点表示分解+合并问题所付出的代价,叶子结点表示解决边界问题所付出的代价。
逐层求和
这里要注意,除去非叶子结点,每一层的和呈现出等比数列性质,计算整个代价 T ( n ) T(n) T(n)本质上就是分解(合并)问题付出的代价+解决递归边界付出的代价。
Case1:
分解问题的代价:
解决递归边界的代价:
Θ ( n l o g b a ) \Theta(n^{log_ba}) Θ(nlogba<