CINTA06

1 G \mathbb{G} G为群, H \mathbb{H} H G \mathbb{G} G的子群,任取 g 1 g_{1} g1, g 2 ∈ G g_{2} \in \mathbb{G} g2G,则 g 1 H = g 2 H g_{1}\mathbb{H}=g_{2}\mathbb{H} g1H=g2H当且仅当 g 1 − 1 g 2 ∈ H g^{-1}_{1}g_{2}\in \mathbb{H} g11g2H

  • 充分性证明: 如果 g 1 H = g 2 H g_{1}\mathbb{H}=g_{2}\mathbb{H} g1H=g2H,则存在 h 1 , h 2 ∈ H h_{1},h_{2} \in \mathbb{H} h1h2H使得 g 1 h 1 = g 2 h 2 g_{1}h_{1}=g_{2}h_{2} g1h1=g2h2,即得 g 2 = g 1 h 1 h 2 − 1 g_{2}=g_{1}h_{1}h^{-1}_{2} g2=g1h1h21,即 g 1 − 1 g 2 ∈ H g^{-1}_{1}g_{2}\in \mathbb{H} g11g2H,充分性得证.
  • 必要性证明:因为 g 2 ∈ g 1 H g_{2}\in g_{1}\mathbb{H} g2g1H,
    • g 1 ∈ H g_{1}\in \mathbb{H} g1H,则 g 2 ∈ g 1 H = H g_{2}\in g_{1}\mathbb{H}=\mathbb{H} g2g1H=H,所以 g 2 ∈ H g_{2}\in \mathbb{H} g2H g 2 H g_{2}\mathbb{H} g2H= H \mathbb{H} H= g 1 H g_{1}\mathbb{H} g1H
    • g 1 ∉ H g_{1} \notin \mathbb{H} g1/H,则 g 2 ∈ g 1 H g_{2}\in g_{1}\mathbb{H} g2g1H = 一个新的集合 K ≠ H \mathbb{K}\neq \mathbb{H} K=H,由命题8.3同一或不相交 g 2 H ≠ H g_{2}\mathbb{H} \neq \mathbb{H} g2H=H,所以 g 2 H = K g_{2}\mathbb{H} = \mathbb{K} g2H=K g 2 H g_{2}\mathbb{H} g2H= K \mathbb{K} K= g 1 H g_{1}\mathbb{H} g1H,必要性得证。

2 证明

[ G : H ] = 2 [\mathbb{G}:\mathbb{H}]=2 [G:H]=2,即 H \mathbb{H} H G \mathbb{G} G下有两个左陪集,一个为 H \mathbb{H} H,一个为 K = G − H \mathbb{K}=\mathbb{G}-\mathbb{H} K=GH,任意 g ∈ G g\in \mathbb{G} gG:

  • 当任取 g ∈ H g\in \mathbb{H} gH,易得 g H g\mathbb{H} gH= H g \mathbb{H}g Hg= H \mathbb{H} H
  • g ∉ H g \notin \mathbb{H} g/H时,由不同陪集不交的性质且H在G下只有两个陪集, g H ≠ H g\mathbb{H} \neq \mathbb{H} gH=H,所以 g H g\mathbb{H} gH= G − H \mathbb{G}-\mathbb{H} GH,t同理易得 H g \mathbb{H}g Hg= G − H \mathbb{G}-\mathbb{H} GH= g H g\mathbb{H} gH。证明得证。

3 证明

因为当任取 g ∈ H g\in \mathbb{H} gH,易得 g H g\mathbb{H} gH= H \mathbb{H} H为第一个左陪集,当 g ∉ H g \notin \mathbb{H} g/H时,由不同陪集不交的性质, g H ≠ H g\mathbb{H} \neq \mathbb{H} gH=H,所以至少存在另外一个左陪集,所以左陪集的数量 [ G : H ] [\mathbb{G}:\mathbb{H}] [G:H]=|G|:|H|大于等于2,|H| ≤ |G|/2得证。

4群论的方法证明费尔马小定理和欧拉定理

  • 费尔马小定理 对 a ∈ G a\in \mathbb{G} aG,假设a构成的循环群 H \mathbb{H} H的大小为k(阶),即有 a k a^{k} ak 1(mod p),又因为拉格朗日定理 H \mathbb{H} H G \mathbb{G} G的子群, G G G的阶为p-1,所以存在一整数j=(p-1)/k,所以 a k ∗ j a^{k*j} akj 1(mod p),即 a p − 1 a^{p-1} ap1 1(mod p),费尔马小定理得证
  • 欧拉定理,好像差不多… 对 a ∈ G a\in \mathbb{G} aG,假设a构成的循环群 H \mathbb{H} H的大小为k(阶),即有 a k a^{k} ak 1(mod n),又因为拉格朗日定理 H \mathbb{H} H G \mathbb{G} G的子群, G G G的阶为 ϕ ( n ) \phi({n}) ϕ(n),所以存在一整数j= ϕ ( n ) \phi({n}) ϕ(n)/k,所以 a k ∗ j a^{k*j} akj 1(mod p),即 a ϕ ( n ) a^{\phi({n})} aϕ(n) 1(mod n),欧拉定理得证。完全一样???不知对错…
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值