yolo算法
文章平均质量分 88
yueguang8
人工智能 图像处理 编解码 linux应用开发 嵌入式软件开发
展开
-
YOLOv8详解:损失函数、Anchor-Free、样本分配策略以及与v5的对比
讲解YOLOV8的损失函数以及与v5的比较,详细介绍了DFL的工作原理。原创 2024-11-01 15:40:33 · 1020 阅读 · 0 评论 -
pytorch训练后pt模型中保存内容详解(yolov8n.pt为例)
在 PyTorch 中,.pt 模型文件通常包含以下几类数据:模型参数:存储模型的权重和偏置参数;优化器状态:包含优化器的状态信息,以便在恢复训练时能够从中断的地方继续。训练状态:一些训练过程中的信息,例如当前的 epoch 数和训练进度。其他元数据:包括模型的配置、训练时使用的超参数等.本文以yoloV8n.pt进行讲解。原创 2024-08-19 08:23:16 · 1666 阅读 · 0 评论 -
yolov8逐步分解(9)_训练过程之Epoch迭代过程
本章节详细介绍yolov8训练过程中Epoch循环及每个batch循环过程的代码功能,并完成_do_train()训练的所有代码的讲解。原创 2024-06-04 09:25:49 · 2466 阅读 · 0 评论 -
yolov8逐步分解(8)_训练过程之Epoch迭代前初始准备
本章节介绍yolov8训练迭代前的准备工作,代码设置了训练循环的初始状态,为实际的训练迭代做好准备。并记录训练过程中的一些关键信息,以便更好地理解和监控模型的训练情况。它还可以为训练结束后的数据分析和可视化提供一些有用的信息。原创 2024-06-04 09:01:56 · 975 阅读 · 0 评论 -
yolov8逐步分解(7)_模型训练初始设置之优化器Optimizer及学习率调度器Scheduler初始化
本章将讲解yolov8训练初始化过程中的优化器Optimizer及学习率调度器Scheduler的初始代码。介绍超参数梯度累积步数,来计算出合适的权重衰减值和总的训练迭代次数,并使用这些参数创建一个优化器对象;介绍学习率调度器和提前停止机制,并恢复了之前保存的训练状态,最后运行了预训练过程结束时的回调函数。这些设置都是为了提高训练的效率和性能原创 2024-05-29 15:01:30 · 3115 阅读 · 0 评论 -
YOLOV8逐步分解(6)_模型训练初始设置之image size检测batch预设及dataloder初始化
本章将讲解yolov8训练初始化过程中image size检测、batch预设及dataloder初始及其他们功能的讲解。原创 2024-05-27 22:31:01 · 2145 阅读 · 0 评论 -
YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP
本篇文章将讲解yolov8中训练初始参数设置MAP的设置代码的讲解,上述文章代码主要目的是检查模型是否支持混合精度训练,并根据检查结果设置相应的配置。这有助于提高训练效率和性能。原创 2024-05-27 22:12:52 · 1970 阅读 · 0 评论 -
YOLO组件之C2f模块介绍
C2f模块在CSP Bottleneck结构中起到关键的作用,通过特征转换、分支处理和特征融合等操作,提取和转换输入数据的特征,生成更具表征能力的输出。这有助于提高网络的性能和表示能力,使得网络能够更好地适应复杂的数据任务。原创 2024-05-08 17:13:39 · 14450 阅读 · 2 评论 -
yolo组件之BottleneckCSP总结
Bottleneck CSP是一种在卷积神经网络中常用的瓶颈层类型,它通过结合瓶颈结构和跨阶段部分连接的方式,提高了网络的性能和效率。它在图像分类、目标检测、语义分割等计算机视觉任务中得到广泛应用,并取得了良好的效果。文章对结构以及代码实现进行了详细的总结介绍。原创 2024-04-16 21:49:16 · 1919 阅读 · 1 评论 -
YOLOV8逐步分解(4)_模型的构建过程
详细介绍了yolov8检测模型DetectionModel()的实例化过程及模型的解析构造过程。原创 2024-04-16 21:23:26 · 1452 阅读 · 1 评论 -
yolov8逐步分解(3)_trainer训练之模型加载
详细介绍了yolov8训练时模型的加载过程,详细介绍了模型加载过程中的参数检测设置等过程。原创 2024-03-31 22:24:43 · 1964 阅读 · 1 评论 -
yolov8逐步分解(2)_DetectionTrainer类初始化过程
详细介绍了yolov8训练器trainer的初始化过程,讲解参数的加载替换过程,着重讲解了coco128数据集的加载解析及校验,最后介绍了损失函数学习率的初始化原创 2024-03-28 22:16:33 · 2144 阅读 · 2 评论 -
yolov8逐步分解(1)--默认参数&超参配置文件加载
本文章详细介绍了yolov8默认配置文件default.yaml如何被加载并处理成训练函数(train)所需要的参数的过程。原创 2024-03-28 21:34:04 · 2950 阅读 · 2 评论 -
yolo中RANK、LOACL_RANK以及WORLD_SIZE的介绍
通过 rank、local-rank 和 world_size 的配合使用,分布式训练系统可以有效地进行数据分发、参数同步和梯度聚合等操作,以实现高效的模型训练和加速。原创 2024-03-20 08:20:24 · 2058 阅读 · 0 评论 -
YOLO之Mini_Rect Training(矩形训练)
mini_rect training(矩形训练)是为了减少冗余信息,提高训练推理速度及精度,使用mini_rect training时不能使用shuffle操作。原创 2024-03-13 18:05:44 · 1302 阅读 · 0 评论 -
yolo组件之Bottleneck层总结
Bottleneck模块的目的就是为了降低网络参数,提高网络训练、推理的速度并提升特征提取能力。文章介绍了在Resnet、yolov5、yolov8不同的网络中,Bottleneck的结构、参数的差异,以及在推理部署的时候需要注意的事项。原创 2024-03-04 21:26:28 · 8879 阅读 · 6 评论