C2F类是yolo算法中的组件之一,该类是一个继承自 nn.Module 的神经网络模块。
1. C2f 类的前向传播过程
首先将输入数据经过第一个卷积层 cv1,然后将输出分为两个部分。其中一个部分直接传递给输出,另一个部分经过多个 Bottleneck 模块的处理。最后,两个部分的结果在通道维度上进行拼接,并经过第二个卷积层 cv2 得到最终的输出。
结构如下:
2. C2f模块的作用
特征转换:C2f模块通过两个卷积层(cv1和cv2)对输入数据进行特征转换。cv1卷积层将输入数据的通道数从c1变换为2 * self.c,cv2卷积层将经过一系列操作后的特征图的通道数从(2 + n) * self.c变换为c2。这些卷积操作有助于提取输入数据中的不同层次和抽象程度的特征。
分支处理:C2f模块将输入数据分为两个分支进行处理。其中一个分支直接传递给输出,另一个分