Floyd判圈法(Floyd Cycle Detection Algorithm)

  Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm)。可用于判定链表、迭代函数、有限状态机中是否有环。如果有环,可以找出环的起点,求出环的长度

  基本思想:利用了快慢指针的思想。两个人在赛跑,A速度快,B速度慢,若是存在环(勺状图),A和B总是会相遇的,相遇时A所经过的路径的长度要比B多若干个环的长度。

  • 算法时间复杂度:令S到P的距离为m,环的长度为n,时间复杂度O(m+n),即O(n);
  • 空间复杂度:O(1);

1. 判定是否存在环

  使用两个指针,一个慢指针(龟)每次前进一步,快指针(兔)指针每次前进两步(两步或多步效果等价,只要一个比另一个快就行。但如果移动步数增加,算法的复杂度可能增加)。如果两者在链表头以外(不包含开始情况)的某一点相遇(即相等),那么链表有环;如果(快指针)到达了链表的结尾(存在结尾,一定无环),那么没环

例题传送门:力扣141. 环形链表

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    bool hasCycle(ListNode *head) {
        if(head == nullptr) return false;
        ListNode *slow=head, *fast=head->next;
        while(fast != nullptr && fast->next != nullptr) {
            if(slow == fast)    return true;
            slow = slow->next;
            fast = fast->next->next;
        }
        return false;
    }
};

2. 环的长度

  在求得有环的基础上,可以求环的长度 C C C。令快指针fast不动,慢指针slow向后遍历节点,再次和fast指针相等时,统计慢指针slow推进的步数,就是环的长度。

class Solution {
public:
	int cycleLen(ListNode* head) {
		ListNode* meetPnt = hasCycle(head);
		if(meetPnt == nullptr) return 0;
		ListNode* travelPnt = meetPnt->next;
		int cycleSize = 1;
		while(travelPnt != meetPnt) {
			travelPnt = travelPnt->next;
			cycleSize++;
		}
		return cycleSize;
	}
private:
    ListNode* hasCycle(ListNode *head) {
        if(head == nullptr) return nullptr;
        ListNode *slow=head, *fast=head->next;
        while(fast != nullptr && fast->next != nullptr) {
            if(slow == fast)    return slow;
            slow = slow->next;
            fast = fast->next->next;
        }
        return nullptr;
    }
};

3.环的起点

在这里插入图片描述
  假设出发起点到环起点的距离为 m m m,已经确定有环,且环的长度 n n n 经上已求得。第一次相遇的起点距离环的距离为 k k k。那么当两者相遇时,慢指针在时间 t t t移动的总距离为 t = m + a ∗ n + k t = m + a *n + k t=m+an+k,快指针在相同时间移动的总距离为 2 t = m + b ∗ n + k 2t = m + b*n + k 2t=m+bn+k,其中 a a a b b b 分别为慢快指针在首次相遇时走的环的圈数。那么有 t = ( b − a ) ∗ n t = (b - a) * n t=(ba)n, 即 t t t m + k m+k m+k 是环的长度的倍数
  为了找到环的起点,一个指针回到链表起点 S S S,另一指针在当前首次相遇位置 M M M。同时向前,步幅为1,他们再次相遇一定在环的起点。因为从链表起点 S S S 到环的起点 P P P 的距离是 m m m,从 P P P 到 首次相遇点 M M M 的距离是 k k k,因为 m + k m+k m+k 是环长的整数倍,所以当从起点出发的指针走过距离 m m m 的时候,另一指针也一定达到了 P P P 点(同时差k步到达首次相遇点)。

### Floyd算法的数学证明过程 Floyd算法的核心在于通过两个速度不同的指针(通常称为快指针和慢指针)来检测链表或其他数据结构中是否存在环。以下是该算法的数学证明过程: #### 1. 基本假设 设链表存在环,其结构分为两部分: - **非环部分**:从链表头节点到进入环的第一个节点的距离记为 \( d \)。 - **环的部分**:环的总长度记为 \( C \),其中任意一点回到自身的距离等于环的周长。 定义两个指针: - 慢指针每次移动一步; - 快指针每次移动两步。 当两者都从链表头部出发时,如果链表中有环,则它们最终会在某个位置相遇[^1]。 --- #### 2. 相遇条件分析 令慢指针走了 \( k \) 步后与快指针首次相遇于某点 \( P \)。此时满足以下关系: - 慢指针走过的路径长度为 \( s = d + mC \),表示它先走过非环部分 \( d \),再绕环若干次(\( m \) 表示绕环次数)到达相遇点。 - 快指针走过的路径长度为 \( f = d + nC \),同样包括非环部分 \( d \) 和绕环多次(\( n \) 表示绕环次数)到达相同点。 由于快指针的速度是慢指针的两倍,因此有: \[ f = 2s \] 代入上述表达式得到: \[ d + nC = 2(d + mC) \] 化简得: \[ d + nC = 2d + 2mC \] 进一步整理得出: \[ d = (n - 2m)C \] 这表明,从链表头节点到环入口的距离 \( d \) 是环周长 \( C \) 的整数倍差值[^3]。 --- #### 3. 找到环的起点 为了找到环的具体起始点,在第一次相遇之后,可以让其中一个指针返回链表头节点,并让另一个指针保持在当前位置不变。随后,这两个指针均以相同的速率前进(每轮只前进一步)。再次相遇的位置即为环的起点。 原因如下: - 设当前相遇点离环入口还有距离 \( x \)。 - 则另一条路径上的剩余距离也为 \( x \)。 因为之前已经知道 \( d = (n - 2m)C \),所以重新同步后的两条路径会恰好在同一时间抵达环的入口处。 --- #### 4. 总结 综上所述,利用快慢指针的方不仅能够有效链表是否存在环,还可以定位环的起点。整个过程中涉及的关键数学原理主要是基于模运算性质以及周期性的特性[^2]。 ```python def detectCycle(head): slow, fast = head, head while fast and fast.next: slow = slow.next # 移动一步 fast = fast.next.next # 移动两步 if slow == fast: # 如果相遇则说明有环 break if not fast or not fast.next: return None # 链表无环的情况 slow = head # 将slow重置回head while slow != fast: slow = slow.next fast = fast.next # 同速前进直到再次相遇 return slow # 返回环的起点 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值