自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(228)
  • 资源 (3)
  • 收藏
  • 关注

原创 ROC 曲线、AUC 置信区间与最佳切点分析

ROC曲线是评估机器学习模型性能的重要工具,特别适用于不平衡数据分类任务。它通过绘制真阳性率(TPR)和假阳性率(FPR)来展示模型在不同阈值下的表现,AUC值(0-1范围)量化模型区分能力。关键进阶包括计算AUC置信区间和使用约登指数确定最佳分类阈值。文章还介绍了单变量诊断分析场景,并提供了Python代码示例,展示了如何生成ROC曲线、计算置信区间和最佳切点。结果表明,该模型AUC为0.85(95%CI:0.8654-0.9408),最佳阈值为0.2609,约登指数0.7136,说明模型具有良好判别能力

2026-01-10 13:37:39 118

原创 生信基础数据处理

本文系统梳理了生物信息学数据分析全流程的关键环节。首先强调区分数据类型(芯片、Bulk RNA-seq、单细胞测序)对预处理方法选择的重要性。接着详细介绍了数据处理的三大步骤:基因ID转换(利用NCBI gene_info文件)、基因长度提取(解析GTF文件)和分组信息准备。重点阐释了四种数据表达形式(Raw Counts、FPKM、TPM、Log)的数学定义和应用场景,提出"双轨制"分析策略:差异表达分析使用Raw Counts(DESeq2/edgeR),其他分析使用log2(TPM

2026-01-09 19:59:55 82

原创 【目录】从零到一:Python & R 全栈生信分析实战

VSCode 打造 R + Python 完美开发环境(MiniConda/Jupyter 配置)。转录组 + 蛋白质组 + 代谢组的联合分析(Conjoint Analysis)。用 Python 脚本批量处理蛋白质-配体对接(AutoDock Vina)。火山图、热图、PCA 图的 Python/R 联动可视化。结合临床数据进行生存分析(Kaplan-Meier)。进行疾病分类预测(随机森林、SVM、XGBoost)。“药物-靶点-疾病”网络构建,活性成分筛选。对肿瘤微环境(TME)的成分解析。

2026-01-07 15:20:50 78

原创 手动修复 Dify 1.7.1 中的 Next.js 远程代码执行漏洞

摘要:针对Dify 1.7.1因Next.js 15.3.x存在RCE漏洞被植入挖矿程序的问题,本文提出解决方案:1)通过sed命令将package.json中的next版本从"~15.3.5"升级至安全版本"15.3.8";2)调整Dockerfile绕过frozen-lockfile限制;3)利用宿主机代理加速镜像重构,最终生成加固后的dify-web-fix:1.7.1镜像。该方案实现了版本精准修复、构建环境优化和安全闭环管理,有效防范远程代码执行风险。(149

2026-01-04 02:08:07 968

原创 Miniconda3在Windows11上和本地Python共生

【代码】Miniconda3在Windows11上和本地Python共生。

2025-12-25 17:17:46 239

原创 数据理解(EDA)

• 二分类:若正例比率 < 5%(或 >95%),说明严重不平衡 → 考虑采样策略或使用适合不平衡的评价指标(AUC/PR-AUC、F1、召回优先等)。目的:了解样本量、特征数、哪些列缺失严重、哪些列是高卡/低卡特征(类别特征是否需要拆分)以及数据类型是否识别正确(比如日期被当成字符串)。• n_unique == df.shape[0] 的列可能是 id/时间戳或高基数文本,应特别处理(编码/哈希/降维)。• 相关系数 > 0.9:考虑只保留其中一个(或做 PCA / 合并 / 求和等)。

2025-09-27 12:31:32 877

原创 Hugging Face 任务全景梳理

HuggingFace已成为AI应用生态的核心平台,其系统化的任务分类可归纳为六大方向:1)多模态(跨模态理解与生成);2)计算机视觉(影像处理全流程);3)自然语言处理(NLP全栈任务);4)音频处理(语音交互相关);5)表格数据(结构化数据分析);6)强化学习(自主决策系统)。这些分类覆盖了当前AI主流应用场景,其中多模态和Any-to-Any任务正推动通用AI发展。未来趋势显示各类任务边界将逐渐模糊,向更智能的跨模态协同方向发展。

2025-09-11 17:04:13 687

原创 带有 Attention 机制的 Encoder-Decoder 架构模型分析

本文介绍了一种基于注意力机制的编码器-解码器模型,用于文本摘要生成。编码器通过双向GRU处理输入文本,生成词向量序列和整体语义表示;解码器则通过注意力机制动态关注原文相关部分,逐步生成摘要。文章以"the cat sat on the mat"为例,详细说明了模型如何计算注意力权重、生成上下文向量,并自回归地输出摘要。该架构能有效捕捉长文本中的关键信息,适用于文本摘要任务。

2025-09-09 12:27:58 1025

原创 初探ComfyUI:从提示词到视频生成的全流程解析

本文介绍了AI图像和视频生成的工作流,重点解析了ComfyUI、Stable Diffusion等工具的分工协作。ComfyUI作为可视化调度平台,可整合基础模型(Stable Diffusion)、控制层(ControlNet/AnimateDiff)和增强工具(Upscaler)。大模型(如Gemini2.5)则负责将自然语言转化为技术参数,优化工作流程。文章指出:静态图仅需基础模型,视频制作必须加入AnimateDiff;大模型适合新手简化操作,熟练用户可直接操作ComfyUI。最后建议从静态图入手,

2025-09-04 14:00:35 1566

原创 EWMA(指数加权移动平均)与异常检测白话指南

EWMA(指数加权移动平均)是一种数据平滑和异常检测方法,通过赋予近期数据更高权重来动态计算平均值。其核心公式为最新数据点与历史值的加权组合,平滑系数α控制新旧数据权重比例。结合标准差计算可识别异常点(通常取2-3倍标准差为阈值)。Python实现展示了EWMA对异常值(如示例中的40)的有效检测能力,同时保持数据平滑性。该方法广泛应用于金融分析、工业监控等领域,通过调整α值可平衡平滑效果与灵敏度,实现数据趋势跟踪与异常预警的双重功能。

2025-08-28 21:59:32 655

原创 Dify 中的 Signal Killed 问题排查指南

文章总结了Dify平台中"signal:killed"错误的排查方法。主要原因是内存不足(OOM)、CPU过高或超时、多容器初始化延迟等。提供了常用排查命令:查看容器状态、日志、资源占用及主机OOM日志。优化建议包括减少并发节点数、增加容器资源、拆分任务等。文章强调这类错误多为资源问题而非代码逻辑错误,关键在于理解Dify的容器结构(API→NextServer→PythonNode)并合理配置资源。掌握这些方法可快速定位容器级问题,确保工作流稳定运行。

2025-08-28 21:49:38 1139

原创 Mangio RVC Fork 本地部署(Cuda12.9)

本文介绍了在Windows11系统部署MangioRVCFork实现本地语音转换的完整流程。重点包括:使用Python3.10虚拟环境;正确安装CUDA12.9兼容的PyTorch和Fairseq;处理依赖安装顺序避免冲突;准备必要的模型权重文件(RVC、RMVPE、HubertBase);配置FFmpeg环境。特别强调了安装过程中的常见问题及解决方案,如PyTorch版本选择、Fairseq的Windows兼容性问题、安全序列化报错处理等。最后通过运行infer_web.py启动Web界面完成部署。

2025-08-23 20:17:36 948

原创 FLOPs、TFLOPs 与 TOPS:计算能力单位

本文介绍了AI计算中的三类关键指标:FLOPs(浮点运算次数)用于衡量模型计算量和硬件浮点性能;TFLOPs(万亿次浮点运算)表示GPU和超算的理论峰值计算能力;TOPS(万亿次算子运算)则更适合评估量化模型在嵌入式设备上的推理性能。FLOPs/TFLOPs适用于训练和浮点计算场景,TOPS则更贴近边缘设备的量化推理需求。理解这些指标差异有助于根据实际应用场景(如数据中心训练、桌面推理或嵌入式部署)合理选择硬件,平衡计算性能与部署成本。

2025-08-23 19:40:52 1427

原创 Ollama 本地部署 Qwen2.5-7b

本文介绍了在Windows11系统下使用Ollama0.11部署Qwen2.5 7B指令微调量化模型的方法。该INT4量化模型将显存占用从FP32的30GB降至5GB,支持CPU/GPU混合运行。文章详细说明了环境配置、安装步骤、显存计算方法及调用示例,并指出量化模型在降低资源消耗的同时可能影响长文本推理精度。通过Ollama工具,用户可便捷地实现大语言模型本地部署与优化。

2025-08-23 19:38:15 1393

原创 Qdrant 单次导入64M限制与安全拆分批量导入实战

Qdrant向量搜索引擎的64MB单次导入限制是出于系统稳定性考虑。本文解析该限制原因,提供Python代码示例实现安全分批导入:通过JSON序列化测量请求体大小,确保单批不超64MB;建议精简payload、设置合理批次余量,并可结合并发上传提升效率。文章帮助用户在保证数据可靠性的同时优化批量导入性能。

2025-08-10 00:18:01 553

原创 Qdrant Filtering:must / should / must_not 全解析(含 Python 实操)

本文详细解析了Qdrant向量数据库的过滤机制,重点介绍了must、should、must_not三大核心操作符的用法。must相当于AND逻辑,要求所有条件必须满足;should在无must时表现为OR逻辑,有must时则影响排序;must_not用于排除特定结果。文章还介绍了min_should高级用法,可以设置should条件的最小满足数量。通过Python代码示例,展示了如何在向量搜索中结合结构化条件,实现更精准的业务需求筛选,如电商价格区间、品牌筛选等场景。这些过滤规则可灵活组合,构建复杂的检索策

2025-08-10 00:10:10 458

原创 用 Python 编写 Dify 工作流脚本(小技巧)

本文分享了在Dify平台使用Python工作流的四个实用技巧:1)用json.loads解析JSON字符串参数,配合dict.get()安全提取嵌套字段;2)使用列表推导式高效提取列表对象中的字段;3)通过{**a,**b}语法合并多个字典;4)构建清晰的结构化返回结果。这些基础技巧能有效提升脚本健壮性和开发效率,是处理Dify工作流的重要技能。文章建议开发者掌握这些常用方法以优化智能体开发体验。

2025-07-30 20:52:13 1879

原创 【实例】Dify1.6 智能体之多工作流链式参数传递

本文介绍了一个基于工作流的智能体设计示例,展示了如何通过多个子工作流协同完成数据处理任务。示例中智能体会自动提取输入字段(支持默认值),依次调用T_Send和T_Recvive两个工作流进行数据处理,最终输出指定字段结果。文章重点解析了工作流的输入输出结构、数据传递机制以及提示词设计思路,包括默认值处理、中间结果缓存和明确输出指向等关键点。该设计体现了工作流的模块化思想,通过清晰的JSON结构传递数据,保证各环节职责单一,从而提升智能体的可维护性和扩展性。

2025-07-20 21:25:12 1618 1

原创 Dify 1.6 安装与踩坑记录(Docker 方式)

本次部署过程中有以下几个关键点需要注意:问题点原因解决方案nginx 和 ssrf_proxy 启动失败启动脚本未设置可执行权限或格式错误重新下载并 chmod +xsandbox 启动失败缺少 config.yaml手动创建配置文件目录和内容镜像拉取速度慢国内网络问题可考虑配置镜像加速器或预拉镜像Dify 的架构相对清晰,一旦环境准备妥当,使用体验还是非常顺畅的。如果你也在尝试构建属于自己的智能体平台,不妨亲自部署一遍,收获会很多!

2025-07-20 21:12:53 1095

原创 向量数据库的实际应用全景解析:从搜索推荐到多模态智能体

摘要: 向量数据库(Vector Database)是处理非结构化语义信息的专用数据库,擅长通过近似最近邻搜索(ANN)实现高效语义检索。其核心应用包括:1️⃣ 智能搜索(如FAQ问答、法律文档检索);2️⃣ 推荐系统(匹配用户与商品向量);3️⃣ 多模态搜索(跨图文音模态检索);4️⃣ 智能体记忆管理(如RAG增强生成);5️⃣ 图像识别(异常检测、无标签识别)。主流工具包括Qdrant、Milvus、Weaviate等,需结合向量模型(如sentence-transformers)使用。适用场景需权衡精

2025-06-20 11:08:18 783

原创 Raspberry Pi Pico + Inmp441麦克风(Pio模拟I2s)<2>

摘要:本文介绍了在Raspberry Pi Pico上使用PIO(Programmable I/O)接收I2S数字麦克风音频数据并保存为WAV文件的方法。项目采用双PIO状态机设计,一个生成I2S时钟信号(WS+SCK),另一个接收24位左声道数据并转换为16位格式。文章详细说明了接线方式、参数设置、WAV文件头构造、PIO汇编程序实现以及数据转换处理流程。项目在MicroPython环境下实现16kHz采样率、6秒时长录音,具有时序精确、稳定可靠的特性,并提供了进一步拓展的可能性,如双声道支持、实时频谱分

2025-06-20 10:56:57 564

原创 使用 OpenMV 实现二维码与字符识别的完整项目解析

本项目基于OpenMV H7Plus开发板(OV5640摄像头),实现图像字符识别与二维码解析功能。系统加载本地图像后,自动分割左(二维码)右(字符)两个区域:左侧采用find_qrcodes()解析二维码,右侧通过预训练的.tflite模型识别字符。关键步骤包括:1)初始化320x240分辨率传感器;2)加载模型与标签文件;3)执行区域分割与图像预处理;4)同步输出二维码文本与字符识别结果。项目采用OpenMV IDE 4.5.9开发,强调版本兼容性,提供完整的工业识别解决方案原型,可扩展至实时处理、OC

2025-06-20 10:46:57 526

原创 快速上手文本向量模型 Sentence-Transformers

本文详细介绍了sentence-transformers库的使用方法,包括安装指南(支持CPU/GPU)、模型加载与文本向量化(示例展示384维向量生成)、余弦相似度计算(0-1值评估语义相似度)。重点推荐了适用不同场景的模型(如多语言处理的paraphrase-multilingual-MiniLM-L12-v2)。

2025-06-15 19:40:49 1390

原创 Qdrant:从连接到查询的实战指南

Qdrant 是近年来非常热门的向量数据库,广泛用于文本搜索、推荐系统、图像相似度匹配等场景。本文将带你从最实用的三个层面入手,快速上手并用好 Qdrant 的核心能力。

2025-06-15 19:22:38 1463

原创 Docker安装 Qdrant:构建向量数据库

本文介绍了使用Docker快速部署Qdrant向量数据库的方法。Qdrant是一款基于Rust的高性能开源向量数据库,适用于语义搜索和AI应用。通过Docker Compose配置,可实现一键启动、数据持久化和API密钥保护,文中提供了详细的yml配置文件示例和操作命令。同时说明了API调用方式、数据存储位置及升级方法,帮助用户快速搭建安全的向量检索服务环境。

2025-06-13 17:32:45 2666

原创 使用 espeak-ng 实现文本转语音

espeak-ng是一款轻量级开源命令行文本转语音工具,支持多语言和音标发音,适合语言学习及开发调试。文章介绍其macOS安装方法(通过Homebrew),演示基础发音功能,并讲解如何用音素标注精准控制发音。工具优势包括隐私友好、高度可定制和跨平台支持,虽发音自然度不及AI模型,但作为调试和学习工具极具价值。最后提供常用参数速查表,鼓励读者探索语音合成可能性。

2025-06-06 12:48:12 2221

原创 什么是“音节”?——语言构成的节拍单位

音节是语言最小的发音单位,由辅音(C)和元音(V)构成。常见结构包括CV(go)、CVC(cat)等,不同语言对音节结构有各自偏好。掌握音节知识对翻译至关重要,如将"Barcelona"拆分为"巴-塞-罗-那"就遵循了音节对应原则。理解音节结构能帮助我们在音译时更准确地把握语言节奏,使翻译结果更自然专业。无论是诗歌韵律还是外语词音译,音节分析都是关键的基础技能。

2025-06-04 00:00:05 2673

原创 从“Bucharest”谈起:词语翻译的音译与意译之路

《翻译中的音译与意译:以"Bucharest"为例》摘要:本文以罗马尼亚首都"Bucharest"(罗语București)为例,探讨翻译中的音译与意译策略。汉语"布加勒斯特"采用音译,完整还原原发音;理论上可意译为"喜悦城",但地名惯例优先音译以保准确性。文章分析了罗马尼亚语的罗曼语族背景及其"文化孤岛"特性,并通过全球语系数据说明语言多样性。最后总结不同情境的翻译选择:人名地名多音译,术语品牌视情况,文学

2025-06-03 23:51:51 621

原创 词语翻译的三步法与背后的语言学思维

翻译是语义、发音与文化背景的综合判断过程。专业翻译需遵循三步法:1)分析词性(名词、动词、专有名词等);2)选择翻译策略(音译、意译或混合,如"可口可乐"兼具音意);3)验证权威性与文化适配性(参考词典、考虑语言习惯)。不同语系词汇处理方式各异,如印欧语系多意译,专有名词优先音译。翻译本质是"意对意、声对声、心对心"的文化解码,而非简单字词转换。

2025-06-03 23:48:00 1142

原创 PIO 中的 IN 和 OUT 指令详解

本文介绍了Raspberry Pi Pico RP2040芯片的PIO(Programmable I/O)功能及其在MicroPython中的应用。重点解析了PIO汇编指令中的IN和OUT指令:IN指令用于从引脚等源读取数据到ISR寄存器,可配合autopush实现自动数据传输;OUT指令则从OSR寄存器输出数据到引脚等目标。文章通过具体示例展示了如何利用这两个指令实现数据采集、引脚控制和协议模拟,并说明了它们协同工作的方法。掌握IN和OUT指令是使用PIO进行高效硬件控制的基础,为开发者提供了无需复杂底层

2025-06-02 13:01:01 1027

原创 ESP32-C3 + W5500 + MicroPython 编译记录

构建esp32的micropython真坑!先是板子ch343不支持macos,换到win可以烧录和编码,但又搞错esp-idf版本,先5.5后5.1.1,这个过程中又遇到cmd编码格式和命令过长,最后放弃,换回macos构建,用官网说的idf5.4版本,还是不行,最后发现官网的是针对1.25的,1.24的得对应5.2.2,终于可以编译成功了,又烧录有问题,才发现会构建三个bin,需要都烧录,偶然间发现还有一个合并了这三个bin的firmware.bin,烧录成功后,一切ok。

2025-06-02 01:30:14 1279

原创 VSCode + GD32F407 构建&烧录

本文总结了在GD32F407VET6开发过程中遇到的启动失败问题及解决方案。作者发现根本原因是链接脚本(.ld文件)配置不当,导致程序无法执行main()函数。文章详细解析了裸机开发中的关键文件:启动文件(.s)负责初始化栈、中断向量表;system_gd32f4xx.c配置系统时钟;gd32f4xx.h定义寄存器;链接脚本(.ld)决定代码段内存布局。同时对比了Keil和GCC开发环境的差异,指出Keil用户往往无需关注底层配置,而使用VSCode+GCC时必须手动处理这些文件。最后提供了相关配置代码,为

2025-05-29 11:09:33 1755

原创 PIO 也有并发喔,巧用SIDE-SET

Raspberry Pi Pico的PIO模块中,side-set功能允许在指令执行时同步控制额外GPIO引脚电平,实现精准IO时序控制。本文通过LED闪烁示例展示了side-set的三大优势:1) 不占用额外指令周期实现并发控制;2) 适用于通信协议同步信号输出;3) 支持硬件级调试和事件触发。示例代码演示了如何用side-set控制状态引脚,并解析了关键参数限制(如最大7周期延时)。这种"零延迟并发"特性使side-set成为PIO最具实用价值的功能之一,特别适合硬实时控制和多信号同

2025-05-27 12:11:05 708

原创 PIO 协议编写必修课之 Shift Left 与 Shift Right

本文分析了Raspberry Pi Pico PIO模块中数据移位方向的重要作用。通过示例代码展示了SHIFT_LEFT和SHIFT_RIGHT的差异:SHIFT_RIGHT为LSB优先(低位先发),SHIFT_LEFT为MSB优先(高位先发)。实验表明,发送和接收端的移位方向必须一致,否则会导致位序颠倒和数据错误。文章还提供了二进制视角下的数据验证示例,建议开发者通过调整位数进行实验以掌握移位方向的匹配技巧。正确设置out_shiftdir和in_shiftdir是实现可靠通信协议的关键。

2025-05-27 11:38:06 764

原创 PIO 中的赋值魔术,MOV 指令

PIO汇编语言中的mov指令是实现数据传递的核心操作,支持在x/y寄存器、OSR、ISR等特殊寄存器间传输数据。与普通赋值不同,mov具有阻塞/非阻塞模式,支持取反修饰符,并能通过null目标丢弃数据。典型应用包括主控与PIO数据交互(如mov(x,osr))、引脚状态采集(mov(isr,pins))以及寄存器清零(mov(x,null))。相比set指令的静态赋值,mov更侧重动态数据流转,是构建复杂PIO状态机的基础。该指令的灵活运用能实现动态PWM、协议适配等高级功能,体现了PIO硬件级编程的特性。

2025-05-24 10:31:58 637

原创 PIO 入门示例一点就“通”

本文介绍了如何在Raspberry Pi Pico上使用PIO(Programmable Input Output)模块实现LED的精确控制。通过编写一个简单的PIO程序,可以在2000Hz的频率下,使LED以0.5秒的间隔循环点亮和熄灭。与传统的GPIO控制相比,PIO能够独立于主CPU运行,减少CPU负担,并通过硬件层面的时序控制实现更高效的操作。文章详细解释了程序的延时机制和状态切换原理,并提供了代码示例。此外,还探讨了如何通过调整频率和延时参数来控制LED闪烁速度,并建议将PIO应用于高精度时序需求

2025-05-23 13:10:33 858

原创 PIO 中的 IF / ELSE,JMP小技巧

本文介绍了如何在Raspberry Pi Pico上使用PIO(可编程输入输出)状态机来控制LED的点亮与熄灭。通过一个简单的“点灯-灭灯”程序,展示了如何利用PIO的汇编指令(如jmp)来实现硬件信号的时序控制。文章详细解析了PIO代码中的关键指令,如pull、mov、set和jmp,并解释了如何通过比较寄存器x和y的值来决定LED的状态。此外,文章还指出了PIO编程中的常见误区,特别是条件跳转的使用,强调了PIO状态机的逻辑构建与传统的if-else语句的区别。通过本文,读者可以更好地理解PIO的工作原

2025-05-23 12:51:41 1083

原创 PIO 的 OSR 与 ISR

树莓派Pico的PIO模块通过两个特殊寄存器OSR(Output Shift Register)和ISR(Input Shift Register)实现Python层与PIO程序之间的数据交互。OSR用于将数据从Python发送到PIO,常用指令包括pull()和mov(pins, osr);ISR则用于从PIO接收数据到Python,常用指令包括in(pins, 1)和push()。两者通过FIFO(先进先出队列)进行数据传输,Python端使用sm.put()和sm.get()进行数据操作。OSR和IS

2025-05-21 11:54:21 784

原创 PIO 的 IRQ 中断触发

本文介绍了如何在Raspberry Pi Pico上使用MicroPython和PIO(Programmable I/O)实现硬件中断(IRQ)功能。通过编写PIO程序,可以模拟一个定时器,并在定时器触发时发送IRQ信号。Python层的中断处理函数会响应这个信号,并打印当前的时间戳。文章详细解析了PIO程序的核心指令和延迟逻辑,并展示了如何将Python层的函数绑定到状态机的IRQ上。运行代码后,控制台会定期打印中断触发的时间戳,证明了PIO与Python的协作成功。此外,文章还探讨了如何扩展这一功能,如

2025-05-21 11:32:06 652

原创 PIO 正确传值的姿势

MicroPython 的 put() 虽然强大,但其行为不够直观,可能会在你处理多语言、数据结构或通信协议时埋坑。通过本文,你应该理解了为什么 'Abbc' 是四个数,'陈' 是三个,42 是一个,以及如何正确传值,优雅写码。

2025-05-20 16:24:31 600

Pico-rp2040,micropython+lvgl 固件

MicroPython没有很好的原生高级GUI库,而LVGL是一个用C实现面向对象的基于组件的高级GUI库,天然成为可以映射到更高级语言(如Python)的候选者。那么两者结合可以干什么呢? 1.快速绘制GUI。 2.缩短更改和微调GUI的周期。 3.通过定义可重用的复合对象,利用Python的语言特性,如继承、闭包、列表理解、生成器、异常处理、任意精度整数等,以更抽象的方式对GUI进行建模。 4.让更多的用户可以访问LVGL。无需了解C即可在嵌入式系统上创建漂亮的GUI。这与CircuitPython的愿景非常吻合。CircuitPython的设计考虑到了教育,使新用户或没有经验的用户更容易开始嵌入式开发。 5.创建工具以在更高级别上使用LVGL(例如拖放设计器)。 注:本编译版本基于:Micropython 1.20.0和LVGL 9.1,适配于树莓派 pico-rp2040版本。

2024-10-20

CSSer常用的Hack兼容表

IE6,IE7,IE8,Firefox,Chrome,Safari的CSS_hack兼容表

2011-11-25

Hadoop2.4Eclipse插件

Hadoop2.4的Eclipse插件,自己编译的,自己在用。

2014-05-14

Activit5.8.1 eclipse插件

解压后覆盖dropins即可,内含插件以及link文件

2012-03-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除