拉普拉斯金字塔主要用于重建图像,拉普拉斯就是为了在放大图像的时候,可以预测残差,何为残差,即小图像放大的时候,需要插入一些像素值,在上文直接插入的是 0,拉普拉斯金字塔算法可以根据周围像素进行预测,从而实现对图像最大程度的还原。
学习到原理如下:用高斯金字塔的每一层图像,减去其上一层图像上采样并高斯卷积之后的预测图像,得到一系列的差值图像即为 LP 分解图像(其中 LP 即为拉普拉斯金字塔图像)。
关于拉普拉斯还存在一个公式(这是本系列课程第一次书写公式),其中 L 为拉普拉斯金字塔图像,G 为高斯金字塔图像

import cv2 as cv
src = cv.imread("./lena.jpg")
print(src.shape[:2])
cv.imshow("src image", src)
# 向下采样1次
PyrDown1 = cv.pyrDown(src)
print(PyrDown1.shape[:2])
cv.imshow("PyrDown1", PyrDown1)
# 向下采样2次
PyrDown2 = cv.pyrDown(PyrDown1)
print(PyrDown2.shape[:2])
cv.imshow("PyrDown2", PyrDown2)
# 向上采样1次
pyrUp1 = cv.pyrUp(PyrDown2)
print(pyrUp1.shape[:2])
cv.imshow("pyrUp1", pyrUp1)
# 计算拉普拉斯金字塔图像
# 采样1次 - 向上采样1次的图
laplace = PyrDown1 - pyrUp1
cv.imshow("laplace", laplace)
cv.waitKey()


本文介绍了拉普拉斯金字塔在图像重建中的应用,通过高斯金字塔的每一层减去上采样并高斯卷积后的预测图像,得到残差图像,以实现对图像的细节还原。拉普拉斯金字塔算法能够根据周围像素预测插入的像素值,从而提高图像放大时的质量。
786

被折叠的 条评论
为什么被折叠?



