梯度下降法,基于这样的观察:如果实值函数 在点 处可微且有定义,那么函数 在 点沿着梯度相反的方向 下降最快。
因而,如果
对于 为一个够小数值时成立,那么 。
考虑到这一点,我们可以从函数 的局部极小值的初始估计 出发,并考虑如下序列 使得
因此可得到
如果顺利的话序列 收敛到期望的极值。注意每次迭代步长 可以改变。
右侧的图片示例了这一过程,这里假设 定义在平面上,并且函数图像是一个碗形。蓝色的曲线是等高线(水平集),即函数 为常数的集合构成的曲线。红色的箭头指向该点梯度的反方向。(一点处的梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达碗底,即函数 值最小的点。